Skip to content

add end-to-end example gallery for transforms v2 #7302

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 14 commits into from
Feb 23, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -5,3 +5,4 @@ sphinx-gallery>=0.11.1
sphinx==5.0.0
tabulate
-e git+https://github.com/pytorch/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme
pycocotools
1 change: 1 addition & 0 deletions gallery/assets/coco/images/000000000001.jpg
1 change: 1 addition & 0 deletions gallery/assets/coco/images/000000000002.jpg
1 change: 1 addition & 0 deletions gallery/assets/coco/instances.json
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"images": [{"file_name": "000000000001.jpg", "height": 512, "width": 512, "id": 1}, {"file_name": "000000000002.jpg", "height": 500, "width": 500, "id": 2}], "annotations": [{"segmentation": [[40.0, 511.0, 26.0, 487.0, 28.0, 438.0, 17.0, 397.0, 24.0, 346.0, 38.0, 306.0, 61.0, 250.0, 111.0, 206.0, 111.0, 187.0, 120.0, 183.0, 136.0, 159.0, 159.0, 150.0, 181.0, 148.0, 182.0, 132.0, 175.0, 132.0, 168.0, 120.0, 154.0, 102.0, 153.0, 62.0, 188.0, 35.0, 191.0, 29.0, 208.0, 20.0, 210.0, 22.0, 227.0, 16.0, 240.0, 16.0, 276.0, 31.0, 285.0, 39.0, 301.0, 88.0, 297.0, 108.0, 281.0, 128.0, 273.0, 138.0, 266.0, 138.0, 264.0, 153.0, 257.0, 162.0, 256.0, 174.0, 284.0, 197.0, 300.0, 221.0, 303.0, 236.0, 337.0, 258.0, 357.0, 306.0, 361.0, 351.0, 358.0, 511.0]], "iscrowd": 0, "image_id": 1, "bbox": [17.0, 16.0, 344.0, 495.0], "category_id": 1, "id": 1}, {"segmentation": [[0.0, 411.0, 43.0, 401.0, 99.0, 395.0, 105.0, 351.0, 124.0, 326.0, 181.0, 294.0, 227.0, 280.0, 245.0, 262.0, 259.0, 234.0, 262.0, 207.0, 271.0, 140.0, 283.0, 139.0, 301.0, 162.0, 309.0, 181.0, 341.0, 175.0, 362.0, 139.0, 369.0, 139.0, 377.0, 163.0, 378.0, 203.0, 381.0, 212.0, 380.0, 220.0, 382.0, 242.0, 404.0, 264.0, 392.0, 293.0, 384.0, 295.0, 385.0, 316.0, 399.0, 343.0, 391.0, 448.0, 452.0, 475.0, 457.0, 494.0, 436.0, 498.0, 402.0, 491.0, 369.0, 488.0, 366.0, 496.0, 319.0, 496.0, 302.0, 485.0, 226.0, 469.0, 128.0, 456.0, 74.0, 458.0, 29.0, 439.0, 0.0, 445.0]], "iscrowd": 0, "image_id": 2, "bbox": [0.0, 139.0, 457.0, 359.0], "category_id": 18, "id": 2}]}
152 changes: 152 additions & 0 deletions gallery/plot_transforms_v2_e2e.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
"""
==================================================
transforms v2: End-to-end object detection example
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sorry for being late for the review.

- transforms v2: End-to-end object detection example
+ Transforms v2: End-to-end object detection example

==================================================

Object detection is not supported out of the box by ``torchvision.transforms`` v1, since it only supports images.
``torchvision.transforms.v2`` enables jointly transforming images, videos, bounding boxes, and masks. This example
showcases an end-to-end object detection training using the stable ``torchvisio.datasets`` and ``torchvision.models`` as
well as the new ``torchvision.transforms.v2`` v2 API.
"""

import pathlib
from collections import defaultdict

import PIL.Image

import torch
import torch.utils.data

import torchvision


# sphinx_gallery_thumbnail_number = -1
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is how we tell sphinx-gallery's to use the (last?) image for the thumbnail in this page
image

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I remembered that there is an option to hide these kind of comments: https://sphinx-gallery.github.io/stable/configuration.html#removing-config-comments Will send a PR

def show(sample):
import matplotlib.pyplot as plt

from torchvision.transforms.v2 import functional as F
from torchvision.utils import draw_bounding_boxes

image, target = sample
if isinstance(image, PIL.Image.Image):
image = F.to_image_tensor(image)
image = F.convert_dtype(image, torch.uint8)
annotated_image = draw_bounding_boxes(image, target["boxes"], colors="yellow", width=3)

fig, ax = plt.subplots()
ax.imshow(annotated_image.permute(1, 2, 0).numpy())
ax.set(xticklabels=[], yticklabels=[], xticks=[], yticks=[])
fig.tight_layout()

fig.show()


# We are using BETA APIs, so we deactivate the associated warning, thereby acknowledging that
# some APIs may slightly change in the future
torchvision.disable_beta_transforms_warning()

from torchvision import models, datasets
import torchvision.transforms.v2 as transforms


########################################################################################################################
# We start off by loading the :class:`~torchvision.datasets.CocoDetection` dataset to have a look at what it currently
# returns, and we'll see how to convert it to a format that is compatible with our new transforms.


def load_example_coco_detection_dataset(**kwargs):
# This loads fake data for illustration purposes of this example. In practice, you'll have
# to replace this with the proper data
root = pathlib.Path("assets") / "coco"
return datasets.CocoDetection(str(root / "images"), str(root / "instances.json"), **kwargs)


dataset = load_example_coco_detection_dataset()

sample = dataset[0]
image, target = sample
print(type(image))
print(type(target), type(target[0]), list(target[0].keys()))


########################################################################################################################
# The dataset returns a two-tuple with the first item being a :class:`PIL.Image.Image` and second one a list of
# dictionaries, which each containing the annotations for a single object instance. As is, this format is not compatible
# with the ``torchvision.transforms.v2``, nor with the models. To overcome that, we provide the
# :func:`~torchvision.datasets.wrap_dataset_for_transforms_v2` function. For
# :class:`~torchvision.datasets.CocoDetection`, this changes the target structure to a single dictionary of lists. It
# also adds the key-value-pairs ``"boxes"``, ``"masks"``, and ``"labels"`` wrapped in the corresponding
# ``torchvision.datapoints``.

dataset = datasets.wrap_dataset_for_transforms_v2(dataset)

sample = dataset[0]
image, target = sample
print(type(image))
print(type(target), list(target.keys()))
print(type(target["boxes"]), type(target["masks"]), type(target["labels"]))

########################################################################################################################
# As baseline, let's have a look at a sample without transformations:

show(sample)


########################################################################################################################
# With the dataset properly set up, we can now define the augmentation pipeline. This is done the same way it is done in
# ``torchvision.transforms`` v1, but now handles bounding boxes and masks without any extra configuration.

transform = transforms.Compose(
[
transforms.RandomPhotometricDistort(),
transforms.RandomZoomOut(
fill=defaultdict(lambda: 0, {PIL.Image.Image: (123, 117, 104)})
),
transforms.RandomIoUCrop(),
transforms.RandomHorizontalFlip(),
transforms.ToImageTensor(),
transforms.ConvertImageDtype(torch.float32),
transforms.SanitizeBoundingBoxes(),
]
)

########################################################################################################################
# .. note::
# Although the :class:`~torchvision.transforms.v2.SanitizeBoundingBoxes` transform is a no-op in this example, but it
# should be placed at least once at the end of a detection pipeline to remove degenerate bounding boxes as well as
# the corresponding labels and optionally masks. It is particularly critical to add it if
# :class:`~torchvision.transforms.v2.RandomIoUCrop` was used.
#
# Let's look how the sample looks like with our augmentation pipeline in place:

dataset = load_example_coco_detection_dataset(transforms=transform)
dataset = datasets.wrap_dataset_for_transforms_v2(dataset)

torch.manual_seed(3141)
sample = dataset[0]

show(sample)


########################################################################################################################
# We can see that the color of the image was distorted, we zoomed out on it (off center) and flipped it horizontally.
# In all of this, the bounding box was transformed accordingly. And without any further ado, we can start training.

data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=2,
# We need a custom collation function here, since the object detection models expect a
# sequence of images and target dictionaries. The default collation function tries to
# `torch.stack` the individual elements, which fails in general for object detection,
# because the number of object instances varies between the samples. This is the same for
# `torchvision.transforms` v1
collate_fn=lambda batch: tuple(zip(*batch)),
)

model = models.get_model("ssd300_vgg16", weights=None, weights_backbone=None).train()

for images, targets in data_loader:
loss_dict = model(images, targets)
print(loss_dict)
# Put your training logic here
break