Skip to content

Resnext #361

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 4 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions torchvision/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,6 +78,7 @@

from .alexnet import *
from .resnet import *
from .resnext import *
from .vgg import *
from .squeezenet import *
from .inception import *
Expand Down
171 changes: 171 additions & 0 deletions torchvision/models/resnext.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,171 @@
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo


__all__ = ['ResNeXt', 'resnext50', 'resnext101',
'resnext152']


def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)


class ResNeXtBottleneckC(nn.Module):
expansion = 4

def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=32, baseWidth=4):
super(ResNeXtBottleneckC, self).__init__()

width = math.floor(planes / 64 * cardinality * baseWidth)

self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(width)
self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride,
padding=1, bias=False, groups=cardinality)
self.bn2 = nn.BatchNorm2d(width)
self.conv3 = nn.Conv2d(width, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride

def forward(self, x):
residual = x

out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)

out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)

out = self.conv3(out)
out = self.bn3(out)

if self.downsample is not None:
residual = self.downsample(x)

out += residual
out = self.relu(out)

return out


class ResNeXt(nn.Module):

def __init__(self, block, layers, num_classes=1000, cardinality=32, baseWidth=4, shortcut='C'):
self.inplanes = 64
self.cardinality = cardinality
self.baseWidth = baseWidth
self.shortcut = shortcut
super(ResNeXt, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7, stride=1)
self.fc = nn.Linear(512 * block.expansion, num_classes)

for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()

def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
reshape = stride != 1 or self.inplanes != planes * block.expansion
useConv = (self.shortcut == 'C') or (self.shortcut == 'B' and reshape)

if useConv:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
elif reshape:
downsample = nn.AvgPool2d(3, stride=stride)

layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.cardinality, self.baseWidth))
self.inplanes = planes * block.expansion

if self.shortcut == 'C':
shortcut = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
else:
shortcut = None
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, 1, shortcut, self.cardinality, self.baseWidth))

return nn.Sequential(*layers)

def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)

x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)

x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)

return x


def resnext50(cardinality=32, baseWidth=4, shortcut='C', **kwargs):
"""Constructs a ResNeXt-50 model.

Args:
cardinality (int): Cardinality of the aggregated transform
baseWidth (int): Base width of the grouped convolution
shortcut ('A'|'B'|'C'): 'B' use 1x1 conv to downsample, 'C' use 1x1 conv on every residual connection
"""
model = ResNeXt(ResNeXtBottleneckC, [3, 4, 6, 3], cardinality=cardinality,
baseWidth=baseWidth, shortcut=shortcut, **kwargs)
return model


def resnext101(cardinality=32, baseWidth=4, shortcut='C', **kwargs):
"""Constructs a ResNeXt-101 model.

Args:
cardinality (int): Cardinality of the aggregated transform
baseWidth (int): Base width of the grouped convolution
shortcut ('A'|'B'|'C'): 'B' use 1x1 conv to downsample, 'C' use 1x1 conv on every residual connection
"""
model = ResNeXt(ResNeXtBottleneckC, [3, 4, 23, 3], cardinality=cardinality,
baseWidth=baseWidth, shortcut=shortcut, **kwargs)
return model


def resnext152(cardinality=32, baseWidth=4, shortcut='C', **kwargs):
"""Constructs a ResNeXt-152 model.

Args:
cardinality (int): Cardinality of the aggregated transform
baseWidth (int): Base width of the grouped convolution
shortcut ('A'|'B'|'C'): 'B' use 1x1 conv to downsample, 'C' use 1x1 conv on every residual connection
"""
model = ResNeXt(ResNeXtBottleneckC, [3, 8, 36, 3], cardinality=cardinality,
baseWidth=baseWidth, shortcut=shortcut, **kwargs)
return model