-
Notifications
You must be signed in to change notification settings - Fork 13.6k
[mlir][test][sve] Add e2e test for linalg.pack + linalg.unpack #129696
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[mlir][test][sve] Add e2e test for linalg.pack + linalg.unpack #129696
Conversation
This patch adds an e2e test for the `linalg.pack` + `linalg.unpack` pair with a dynamic inner tile size that's tied to SVE's "vscale": ```mlir %c4 = arith.constant 4 : index %vs = vector.vscale %tile_size = arith.muli %c4, %vs : index ``` This means that the actual size of the corresponding inner and outer tile size will depend on the runtime value of "vscale". To make the new test deterministic (and to make it easier to experiment), I have hard-coded the value of "vscale" to 2 via (2 x 128 bits = 256 bits): ```mlir `func.call @setArmVLBits(%c256) : (i32) -> () ``` This can be relaxed at a later time or played with when experimenting locally with e.g. QEMU. NOTE: Vectorization has not been enabled yet (scalable vectorization of `linalg.unpack` is still WIP).
@llvm/pr-subscribers-mlir-sve @llvm/pr-subscribers-mlir Author: Andrzej Warzyński (banach-space) ChangesThis patch adds an e2e test for the %c4 = arith.constant 4 : index
%vs = vector.vscale
%tile_size = arith.muli %c4, %vs : index This means that the actual size of the corresponding inner and outer To make the new test deterministic (and to make it easier to `func.call @<!-- -->setArmVLBits(%c256) : (i32) -> () This can be relaxed at a later time or played with when experimenting NOTE: Vectorization has not been enabled yet (scalable vectorization of Full diff: https://github.com/llvm/llvm-project/pull/129696.diff 1 Files Affected:
diff --git a/mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/pack-unpack-scalable-inner-tile.mlir b/mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/pack-unpack-scalable-inner-tile.mlir
new file mode 100644
index 0000000000000..c8b71569d9e9f
--- /dev/null
+++ b/mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/pack-unpack-scalable-inner-tile.mlir
@@ -0,0 +1,185 @@
+// DEFINE: %{compile} = mlir-opt %s \
+// DEFINE: -transform-interpreter -test-transform-dialect-erase-schedule \
+// DEFINE: --lower-vector-mask |\
+// DEFINE: mlir-opt -arm-sve-legalize-vector-storage -convert-vector-to-llvm="enable-arm-sve"\
+// DEFINE: -test-lower-to-llvm -o %t
+// DEFINE: %{entry_point} = main
+// DEFINE: %{run} = mlir-cpu-runner %t -e %{entry_point} -entry-point-result=void --march=aarch64 --mattr="+sve"\
+// DEFINE: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils,%native_mlir_arm_runner_utils
+
+// RUN: rm -f %t && %{compile} && %{run} | FileCheck %s
+
+/// End-to-end test for linalg.pack + linalg.unpack where one of the inner tile sizes is
+/// scalable.
+/// NOTE: Vectorization has not been enabled yet!
+
+
+/// The main entry point
+func.func @main() {
+ // Set vscale to 2 (vector width = 256). This will have identical effect to:
+ // * qemu-aarch64 -cpu max,sve-max-vq=2 (...)
+ // (If your platform supports it, you can play with other values as well)
+ %c256 = arith.constant 256 : i32
+ func.call @setArmVLBits(%c256) : (i32) -> ()
+
+ // Dynamic/scalable tile size (vscale x 4)
+ %c4 = arith.constant 4 : index
+ %vs = vector.vscale
+ %tile_size = arith.muli %c4, %vs : index
+
+ vector.print str "\nINNER TILE SIZE (run-time value): "
+ vector.print %tile_size : index
+
+ // Input matrix. The values and dimension have been selected so that this
+ // matrix can be viewed as:
+ // +--------+--------+--------+
+ // | | | |
+ // | 4x4 | 4x4 | 4x4 |
+ // | | | |
+ // +--------+--------+--------+
+ // | | | |
+ // | 3x4 | 3x4 | 3x4 |
+ // | | | |
+ // +--------+--------+--------+
+ // This way, after packing, there will be "incomplete" tiles that will
+ // contain the padding value. After unpacking, the padding value should be
+ // gone.
+ %A_before = arith.constant dense<[
+ [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
+ [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
+ [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
+ [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
+ [4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6],
+ [4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6],
+ [4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6]
+ ]> : tensor<7x12xi32>
+
+ // STEP 1: PACK + UNPACK
+ // TODO: We should change the order to: Pack+print, Unpack+print. However, that causes the
+ // bufferization to fail with:
+ // * 'tensor.cast' op not bufferizable under the given constraints: cannot avoid RaW conflict
+ // Investigate and either fix or remove this comment (if impossible to work-around).
+ %A_pack = func.call @pack_main(%A_before, %tile_size) : (tensor<7x12xi32>, index) -> tensor<2x?x4x?xi32>
+ %A_unpack = func.call @unpack_main(%A_pack, %tile_size) : (tensor<2x?x4x?xi32>, index) -> tensor<7x12xi32>
+
+ // STEP 2: Print the matrices
+ vector.print str "\nINPUT MATRIX (before packing)\n"
+ %A_before_cast = tensor.cast %A_before : tensor<7x12xi32> to tensor<*xi32>
+ call @printMemrefI32(%A_before_cast) : (tensor<*xi32>) -> ()
+
+ vector.print str "\nINPUT MATRIX (after packing)\n"
+ %A_pack_cast = tensor.cast %A_pack : tensor<2x?x4x?xi32> to tensor<*xi32>
+ // There ought to be at least one pad value inserted into a tile
+ // CHECK-LABEL: (after packing)
+ // CHECK: 123
+ call @printMemrefI32(%A_pack_cast) : (tensor<*xi32>) -> ()
+
+ vector.print str "\nINPUT MATRIX (after unpacking)\n"
+ %A_unpack_cast = tensor.cast %A_unpack : tensor<7x12xi32> to tensor<*xi32>
+ // This ought to match the input matrix
+ // CHECK-LABEL: (after unpacking)
+ // CHECK: [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
+ // CHECK: [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
+ // CHECK: [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
+ // CHECK: [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
+ // CHECK: [4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6],
+ // CHECK: [4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6],
+ // CHECK: [4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6]
+ call @printMemrefI32(%A_unpack_cast) : (tensor<*xi32>) -> ()
+
+ return
+}
+
+/// Takes the unpacked matrix + inner tile size to use and return the packed matrix.
+func.func private @pack_main(%A: tensor<7x12xi32>, %inner_tile_size: index) -> (tensor<2x?x4x?xi32>) {
+ // Get the size of dim (we could skip tensor.dim, but this way we can keep it generic)
+ %c1 = arith.constant 1 : index
+ %dim_1 = tensor.dim %A, %c1 : tensor<7x12xi32>
+
+ // Compute the outer-tile size corresponding to the dynamic inner tile size.
+ // NOTE: This step is importantant. While as a user we would only tweak the
+ // inner tile sizes, we need to make sure that the outer sizes are updated
+ // accordingly.
+ %outer_tile_size = arith.ceildivui %dim_1, %inner_tile_size : index
+
+ // NOTE: This is deliberately much larger than the input values in %A_before
+ // so that it's easy to spot it in the output.
+ %pad_val = arith.constant 123 : i32
+
+ %A_pack_empty = tensor.empty(%outer_tile_size, %inner_tile_size) : tensor<2x?x4x?xi32>
+
+ %A_pack = linalg.pack %A
+ padding_value(%pad_val : i32)
+ inner_dims_pos = [0, 1]
+ inner_tiles = [4, %inner_tile_size]
+ into %A_pack_empty : tensor<7x12xi32> -> tensor<2x?x4x?xi32>
+
+ return %A_pack : tensor<2x?x4x?xi32>
+}
+
+/// Takes the packed matrix, unpacks it and returns the result.
+func.func private @unpack_main(%A_pack : tensor<2x?x4x?xi32>, %inner_tile_size: index) -> tensor<7x12xi32> {
+ %A_unpack_empty = tensor.empty() : tensor<7x12xi32>
+
+ %A_unpack = linalg.unpack %A_pack
+ inner_dims_pos = [0, 1]
+ inner_tiles = [4, %inner_tile_size]
+ into %A_unpack_empty : tensor<2x?x4x?xi32> -> tensor<7x12xi32>
+
+ return %A_unpack : tensor<7x12xi32>
+}
+
+module @transforms attributes { transform.with_named_sequence } {
+ transform.named_sequence @__transform_main(%module: !transform.any_op {transform.consume}) {
+ %pack = transform.structured.match ops{["linalg.pack"]} in %module : (!transform.any_op) -> !transform.any_op
+ %unpack = transform.structured.match ops{["linalg.unpack"]} in %module : (!transform.any_op) -> !transform.any_op
+
+ // 1.1 Tile the linalg.pack Op so that we can decompose it into e.g. tensor.pad
+ // and other lower-level Ops (see step 2.1)
+ %tiled_pack_op_p, %loops_pack:2 = transform.structured.tile_using_for %pack tile_sizes [1, 1]
+ : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
+
+ // 1.2 Tile the linalg.unpack Op so that we can decompose it into e.g. tensor.pad
+ // and other lower-level Ops (see step 2)
+ %tiled_unpack_op_p, %loops_unpack:2 = transform.structured.tile_using_for %unpack tile_sizes [4, 1]
+ : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
+
+ // 2.1. Decompose tiled PackOp into lower-level Ops
+ %func_op_pack = transform.get_parent_op %tiled_pack_op_p {isolated_from_above} : (!transform.any_op) -> !transform.op<"func.func">
+ transform.apply_patterns to %func_op_pack {
+ transform.apply_patterns.linalg.decompose_pack_unpack
+ transform.apply_patterns.linalg.decompose_pad
+ } : !transform.op<"func.func">
+
+ transform.apply_patterns to %func_op_pack {
+ transform.apply_patterns.tensor.fold_tensor_subset_ops
+ transform.apply_patterns.canonicalization
+ } : !transform.op<"func.func">
+
+ // 2.1. Decompose tiled UnpackOp into lower-level Ops
+ %func_op_unpack = transform.get_parent_op %tiled_unpack_op_p {isolated_from_above} : (!transform.any_op) -> !transform.op<"func.func">
+ transform.apply_patterns to %func_op_unpack {
+ transform.apply_patterns.linalg.decompose_pack_unpack
+ } : !transform.op<"func.func">
+
+ transform.apply_patterns to %func_op_unpack {
+ transform.apply_patterns.tensor.fold_tensor_subset_ops
+ transform.apply_patterns.canonicalization
+ } : !transform.op<"func.func">
+
+ // 3. Bufferize before lowering to LLVM
+ %bufferize = transform.bufferization.one_shot_bufferize %module
+ {bufferize_function_boundaries=true} : (!transform.any_op) -> !transform.any_op
+
+ // 4. Canonicalize
+ %func_op_bufferized = transform.structured.match ops{["func.func"]} in %bufferize : (!transform.any_op) -> !transform.op<"func.func">
+ transform.apply_patterns to %func_op_bufferized {
+ transform.apply_patterns.canonicalization
+ } : !transform.op<"func.func">
+
+ transform.yield
+ }
+}
+
+func.func private @printMemrefI32(%ptr : tensor<*xi32>)
+func.func private @setArmVLBits(%bits : i32)
|
@llvm/pr-subscribers-mlir-linalg Author: Andrzej Warzyński (banach-space) ChangesThis patch adds an e2e test for the %c4 = arith.constant 4 : index
%vs = vector.vscale
%tile_size = arith.muli %c4, %vs : index This means that the actual size of the corresponding inner and outer To make the new test deterministic (and to make it easier to `func.call @<!-- -->setArmVLBits(%c256) : (i32) -> () This can be relaxed at a later time or played with when experimenting NOTE: Vectorization has not been enabled yet (scalable vectorization of Full diff: https://github.com/llvm/llvm-project/pull/129696.diff 1 Files Affected:
diff --git a/mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/pack-unpack-scalable-inner-tile.mlir b/mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/pack-unpack-scalable-inner-tile.mlir
new file mode 100644
index 0000000000000..c8b71569d9e9f
--- /dev/null
+++ b/mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/pack-unpack-scalable-inner-tile.mlir
@@ -0,0 +1,185 @@
+// DEFINE: %{compile} = mlir-opt %s \
+// DEFINE: -transform-interpreter -test-transform-dialect-erase-schedule \
+// DEFINE: --lower-vector-mask |\
+// DEFINE: mlir-opt -arm-sve-legalize-vector-storage -convert-vector-to-llvm="enable-arm-sve"\
+// DEFINE: -test-lower-to-llvm -o %t
+// DEFINE: %{entry_point} = main
+// DEFINE: %{run} = mlir-cpu-runner %t -e %{entry_point} -entry-point-result=void --march=aarch64 --mattr="+sve"\
+// DEFINE: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils,%native_mlir_arm_runner_utils
+
+// RUN: rm -f %t && %{compile} && %{run} | FileCheck %s
+
+/// End-to-end test for linalg.pack + linalg.unpack where one of the inner tile sizes is
+/// scalable.
+/// NOTE: Vectorization has not been enabled yet!
+
+
+/// The main entry point
+func.func @main() {
+ // Set vscale to 2 (vector width = 256). This will have identical effect to:
+ // * qemu-aarch64 -cpu max,sve-max-vq=2 (...)
+ // (If your platform supports it, you can play with other values as well)
+ %c256 = arith.constant 256 : i32
+ func.call @setArmVLBits(%c256) : (i32) -> ()
+
+ // Dynamic/scalable tile size (vscale x 4)
+ %c4 = arith.constant 4 : index
+ %vs = vector.vscale
+ %tile_size = arith.muli %c4, %vs : index
+
+ vector.print str "\nINNER TILE SIZE (run-time value): "
+ vector.print %tile_size : index
+
+ // Input matrix. The values and dimension have been selected so that this
+ // matrix can be viewed as:
+ // +--------+--------+--------+
+ // | | | |
+ // | 4x4 | 4x4 | 4x4 |
+ // | | | |
+ // +--------+--------+--------+
+ // | | | |
+ // | 3x4 | 3x4 | 3x4 |
+ // | | | |
+ // +--------+--------+--------+
+ // This way, after packing, there will be "incomplete" tiles that will
+ // contain the padding value. After unpacking, the padding value should be
+ // gone.
+ %A_before = arith.constant dense<[
+ [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
+ [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
+ [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
+ [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
+ [4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6],
+ [4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6],
+ [4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6]
+ ]> : tensor<7x12xi32>
+
+ // STEP 1: PACK + UNPACK
+ // TODO: We should change the order to: Pack+print, Unpack+print. However, that causes the
+ // bufferization to fail with:
+ // * 'tensor.cast' op not bufferizable under the given constraints: cannot avoid RaW conflict
+ // Investigate and either fix or remove this comment (if impossible to work-around).
+ %A_pack = func.call @pack_main(%A_before, %tile_size) : (tensor<7x12xi32>, index) -> tensor<2x?x4x?xi32>
+ %A_unpack = func.call @unpack_main(%A_pack, %tile_size) : (tensor<2x?x4x?xi32>, index) -> tensor<7x12xi32>
+
+ // STEP 2: Print the matrices
+ vector.print str "\nINPUT MATRIX (before packing)\n"
+ %A_before_cast = tensor.cast %A_before : tensor<7x12xi32> to tensor<*xi32>
+ call @printMemrefI32(%A_before_cast) : (tensor<*xi32>) -> ()
+
+ vector.print str "\nINPUT MATRIX (after packing)\n"
+ %A_pack_cast = tensor.cast %A_pack : tensor<2x?x4x?xi32> to tensor<*xi32>
+ // There ought to be at least one pad value inserted into a tile
+ // CHECK-LABEL: (after packing)
+ // CHECK: 123
+ call @printMemrefI32(%A_pack_cast) : (tensor<*xi32>) -> ()
+
+ vector.print str "\nINPUT MATRIX (after unpacking)\n"
+ %A_unpack_cast = tensor.cast %A_unpack : tensor<7x12xi32> to tensor<*xi32>
+ // This ought to match the input matrix
+ // CHECK-LABEL: (after unpacking)
+ // CHECK: [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
+ // CHECK: [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
+ // CHECK: [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
+ // CHECK: [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
+ // CHECK: [4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6],
+ // CHECK: [4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6],
+ // CHECK: [4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6]
+ call @printMemrefI32(%A_unpack_cast) : (tensor<*xi32>) -> ()
+
+ return
+}
+
+/// Takes the unpacked matrix + inner tile size to use and return the packed matrix.
+func.func private @pack_main(%A: tensor<7x12xi32>, %inner_tile_size: index) -> (tensor<2x?x4x?xi32>) {
+ // Get the size of dim (we could skip tensor.dim, but this way we can keep it generic)
+ %c1 = arith.constant 1 : index
+ %dim_1 = tensor.dim %A, %c1 : tensor<7x12xi32>
+
+ // Compute the outer-tile size corresponding to the dynamic inner tile size.
+ // NOTE: This step is importantant. While as a user we would only tweak the
+ // inner tile sizes, we need to make sure that the outer sizes are updated
+ // accordingly.
+ %outer_tile_size = arith.ceildivui %dim_1, %inner_tile_size : index
+
+ // NOTE: This is deliberately much larger than the input values in %A_before
+ // so that it's easy to spot it in the output.
+ %pad_val = arith.constant 123 : i32
+
+ %A_pack_empty = tensor.empty(%outer_tile_size, %inner_tile_size) : tensor<2x?x4x?xi32>
+
+ %A_pack = linalg.pack %A
+ padding_value(%pad_val : i32)
+ inner_dims_pos = [0, 1]
+ inner_tiles = [4, %inner_tile_size]
+ into %A_pack_empty : tensor<7x12xi32> -> tensor<2x?x4x?xi32>
+
+ return %A_pack : tensor<2x?x4x?xi32>
+}
+
+/// Takes the packed matrix, unpacks it and returns the result.
+func.func private @unpack_main(%A_pack : tensor<2x?x4x?xi32>, %inner_tile_size: index) -> tensor<7x12xi32> {
+ %A_unpack_empty = tensor.empty() : tensor<7x12xi32>
+
+ %A_unpack = linalg.unpack %A_pack
+ inner_dims_pos = [0, 1]
+ inner_tiles = [4, %inner_tile_size]
+ into %A_unpack_empty : tensor<2x?x4x?xi32> -> tensor<7x12xi32>
+
+ return %A_unpack : tensor<7x12xi32>
+}
+
+module @transforms attributes { transform.with_named_sequence } {
+ transform.named_sequence @__transform_main(%module: !transform.any_op {transform.consume}) {
+ %pack = transform.structured.match ops{["linalg.pack"]} in %module : (!transform.any_op) -> !transform.any_op
+ %unpack = transform.structured.match ops{["linalg.unpack"]} in %module : (!transform.any_op) -> !transform.any_op
+
+ // 1.1 Tile the linalg.pack Op so that we can decompose it into e.g. tensor.pad
+ // and other lower-level Ops (see step 2.1)
+ %tiled_pack_op_p, %loops_pack:2 = transform.structured.tile_using_for %pack tile_sizes [1, 1]
+ : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
+
+ // 1.2 Tile the linalg.unpack Op so that we can decompose it into e.g. tensor.pad
+ // and other lower-level Ops (see step 2)
+ %tiled_unpack_op_p, %loops_unpack:2 = transform.structured.tile_using_for %unpack tile_sizes [4, 1]
+ : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
+
+ // 2.1. Decompose tiled PackOp into lower-level Ops
+ %func_op_pack = transform.get_parent_op %tiled_pack_op_p {isolated_from_above} : (!transform.any_op) -> !transform.op<"func.func">
+ transform.apply_patterns to %func_op_pack {
+ transform.apply_patterns.linalg.decompose_pack_unpack
+ transform.apply_patterns.linalg.decompose_pad
+ } : !transform.op<"func.func">
+
+ transform.apply_patterns to %func_op_pack {
+ transform.apply_patterns.tensor.fold_tensor_subset_ops
+ transform.apply_patterns.canonicalization
+ } : !transform.op<"func.func">
+
+ // 2.1. Decompose tiled UnpackOp into lower-level Ops
+ %func_op_unpack = transform.get_parent_op %tiled_unpack_op_p {isolated_from_above} : (!transform.any_op) -> !transform.op<"func.func">
+ transform.apply_patterns to %func_op_unpack {
+ transform.apply_patterns.linalg.decompose_pack_unpack
+ } : !transform.op<"func.func">
+
+ transform.apply_patterns to %func_op_unpack {
+ transform.apply_patterns.tensor.fold_tensor_subset_ops
+ transform.apply_patterns.canonicalization
+ } : !transform.op<"func.func">
+
+ // 3. Bufferize before lowering to LLVM
+ %bufferize = transform.bufferization.one_shot_bufferize %module
+ {bufferize_function_boundaries=true} : (!transform.any_op) -> !transform.any_op
+
+ // 4. Canonicalize
+ %func_op_bufferized = transform.structured.match ops{["func.func"]} in %bufferize : (!transform.any_op) -> !transform.op<"func.func">
+ transform.apply_patterns to %func_op_bufferized {
+ transform.apply_patterns.canonicalization
+ } : !transform.op<"func.func">
+
+ transform.yield
+ }
+}
+
+func.func private @printMemrefI32(%ptr : tensor<*xi32>)
+func.func private @setArmVLBits(%bits : i32)
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM. Although i am not expert on SVE the test checks its claims (e.g. line 80-88).
mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/pack-unpack-scalable-inner-tile.mlir
Show resolved
Hide resolved
mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/pack-unpack-scalable-inner-tile.mlir
Show resolved
Hide resolved
The CHECK lines just make sure that |
And we do have an SVE buildbot that runs these. |
This is failing on our bots: https://lab.llvm.org/buildbot/#/builders/17/builds/6269
Does it need to use a substitution maybe? |
Failing bot: * https://lab.llvm.org/buildbot/#/builders/17/builds/6269 The offending test was added in: * llvm/llvm-project#129696 To fix this, use: * `%mcr_aarch64_cmd` (which is what we used for ArmSVE e2e tests), Instead of: * `mlir-cpu-runner` (which was renamed to `mlir-runner` in #123776). Committed without review due to being a trivial test update; if this needs discussion, please ping me or leave a comment on GitHub.
Yes, my bad, sorry. I've just pushed a fix: |
Failing bot: * https://lab.llvm.org/buildbot/#/builders/17/builds/6269 The offending test was added in: * llvm/llvm-project#129696 To fix this, use: * `%mcr_aarch64_cmd` (which is what we used for ArmSVE e2e tests), Instead of: * `mlir-cpu-runner` (which was renamed to `mlir-runner` in #123776). Committed without review due to being a trivial test update; if this needs discussion, please ping me or leave a comment on GitHub.
…129696) This patch adds an e2e test for the `linalg.pack` + `linalg.unpack` pair with a dynamic inner tile size that's tied to SVE's "vscale": ```mlir %c4 = arith.constant 4 : index %vs = vector.vscale %tile_size = arith.muli %c4, %vs : index ``` This means that the actual size of the corresponding inner and outer tile size will depend on the runtime value of "vscale". To make the new test deterministic (and to make it easier to experiment), I have hard-coded the value of "vscale" to 2 via (2 x 128 bits = 256 bits): ```mlir `func.call @setArmVLBits(%c256) : (i32) -> () ``` This can be relaxed at a later time or played with when experimenting locally with e.g. QEMU. NOTE: Vectorization has not been enabled yet (scalable vectorization of `linalg.unpack` is still WIP).
Failing bot: * https://lab.llvm.org/buildbot/#/builders/17/builds/6269 The offending test was added in: * llvm#129696 To fix this, use: * `%mcr_aarch64_cmd` (which is what we used for ArmSVE e2e tests), Instead of: * `mlir-cpu-runner` (which was renamed to `mlir-runner` in llvm#123776). Committed without review due to being a trivial test update; if this needs discussion, please ping me or leave a comment on GitHub.
This patch adds an e2e test for the
linalg.pack
+linalg.unpack
pairwith a dynamic inner tile size that's tied to SVE's "vscale":
This means that the actual size of the corresponding inner and outer
tile size will depend on the runtime value of "vscale".
To make the new test deterministic (and to make it easier to
experiment), I have hard-coded the value of "vscale" to 2 via (2 x 128
bits = 256 bits):
This can be relaxed at a later time or played with when experimenting
locally with e.g. QEMU.
NOTE: Vectorization has not been enabled yet (scalable vectorization of
linalg.unpack
is still WIP).