Skip to content

[mlir][test][sve] Add e2e test for linalg.pack + linalg.unpack #129696

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 5, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,185 @@
// DEFINE: %{compile} = mlir-opt %s \
// DEFINE: -transform-interpreter -test-transform-dialect-erase-schedule \
// DEFINE: --lower-vector-mask |\
// DEFINE: mlir-opt -arm-sve-legalize-vector-storage -convert-vector-to-llvm="enable-arm-sve"\
// DEFINE: -test-lower-to-llvm -o %t
// DEFINE: %{entry_point} = main
// DEFINE: %{run} = mlir-cpu-runner %t -e %{entry_point} -entry-point-result=void --march=aarch64 --mattr="+sve"\
// DEFINE: -shared-libs=%mlir_runner_utils,%mlir_c_runner_utils,%native_mlir_arm_runner_utils

// RUN: rm -f %t && %{compile} && %{run} | FileCheck %s

/// End-to-end test for linalg.pack + linalg.unpack where one of the inner tile sizes is
/// scalable.
/// NOTE: Vectorization has not been enabled yet!


/// The main entry point
func.func @main() {
// Set vscale to 2 (vector width = 256). This will have identical effect to:
// * qemu-aarch64 -cpu max,sve-max-vq=2 (...)
// (If your platform supports it, you can play with other values as well)
%c256 = arith.constant 256 : i32
func.call @setArmVLBits(%c256) : (i32) -> ()

// Dynamic/scalable tile size (vscale x 4)
%c4 = arith.constant 4 : index
%vs = vector.vscale
%tile_size = arith.muli %c4, %vs : index

vector.print str "\nINNER TILE SIZE (run-time value): "
vector.print %tile_size : index

// Input matrix. The values and dimension have been selected so that this
// matrix can be viewed as:
// +--------+--------+--------+
// | | | |
// | 4x4 | 4x4 | 4x4 |
// | | | |
// +--------+--------+--------+
// | | | |
// | 3x4 | 3x4 | 3x4 |
// | | | |
// +--------+--------+--------+
// This way, after packing, there will be "incomplete" tiles that will
// contain the padding value. After unpacking, the padding value should be
// gone.
%A_before = arith.constant dense<[
[1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
[1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
[1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
[1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
[4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6],
[4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6],
[4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6]
]> : tensor<7x12xi32>

// STEP 1: PACK + UNPACK
// TODO: We should change the order to: Pack+print, Unpack+print. However, that causes the
// bufferization to fail with:
// * 'tensor.cast' op not bufferizable under the given constraints: cannot avoid RaW conflict
// Investigate and either fix or remove this comment (if impossible to work-around).
%A_pack = func.call @pack_main(%A_before, %tile_size) : (tensor<7x12xi32>, index) -> tensor<2x?x4x?xi32>
%A_unpack = func.call @unpack_main(%A_pack, %tile_size) : (tensor<2x?x4x?xi32>, index) -> tensor<7x12xi32>

// STEP 2: Print the matrices
vector.print str "\nINPUT MATRIX (before packing)\n"
%A_before_cast = tensor.cast %A_before : tensor<7x12xi32> to tensor<*xi32>
call @printMemrefI32(%A_before_cast) : (tensor<*xi32>) -> ()

vector.print str "\nINPUT MATRIX (after packing)\n"
%A_pack_cast = tensor.cast %A_pack : tensor<2x?x4x?xi32> to tensor<*xi32>
// There ought to be at least one pad value inserted into a tile
// CHECK-LABEL: (after packing)
// CHECK: 123
call @printMemrefI32(%A_pack_cast) : (tensor<*xi32>) -> ()

vector.print str "\nINPUT MATRIX (after unpacking)\n"
%A_unpack_cast = tensor.cast %A_unpack : tensor<7x12xi32> to tensor<*xi32>
// This ought to match the input matrix
// CHECK-LABEL: (after unpacking)
// CHECK: [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
// CHECK: [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
// CHECK: [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
// CHECK: [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
// CHECK: [4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6],
// CHECK: [4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6],
// CHECK: [4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6]
call @printMemrefI32(%A_unpack_cast) : (tensor<*xi32>) -> ()

return
}

/// Takes the unpacked matrix + inner tile size to use and return the packed matrix.
func.func private @pack_main(%A: tensor<7x12xi32>, %inner_tile_size: index) -> (tensor<2x?x4x?xi32>) {
// Get the size of dim (we could skip tensor.dim, but this way we can keep it generic)
%c1 = arith.constant 1 : index
%dim_1 = tensor.dim %A, %c1 : tensor<7x12xi32>

// Compute the outer-tile size corresponding to the dynamic inner tile size.
// NOTE: This step is importantant. While as a user we would only tweak the
// inner tile sizes, we need to make sure that the outer sizes are updated
// accordingly.
%outer_tile_size = arith.ceildivui %dim_1, %inner_tile_size : index

// NOTE: This is deliberately much larger than the input values in %A_before
// so that it's easy to spot it in the output.
%pad_val = arith.constant 123 : i32

%A_pack_empty = tensor.empty(%outer_tile_size, %inner_tile_size) : tensor<2x?x4x?xi32>

%A_pack = linalg.pack %A
padding_value(%pad_val : i32)
inner_dims_pos = [0, 1]
inner_tiles = [4, %inner_tile_size]
into %A_pack_empty : tensor<7x12xi32> -> tensor<2x?x4x?xi32>

return %A_pack : tensor<2x?x4x?xi32>
}

/// Takes the packed matrix, unpacks it and returns the result.
func.func private @unpack_main(%A_pack : tensor<2x?x4x?xi32>, %inner_tile_size: index) -> tensor<7x12xi32> {
%A_unpack_empty = tensor.empty() : tensor<7x12xi32>

%A_unpack = linalg.unpack %A_pack
inner_dims_pos = [0, 1]
inner_tiles = [4, %inner_tile_size]
into %A_unpack_empty : tensor<2x?x4x?xi32> -> tensor<7x12xi32>

return %A_unpack : tensor<7x12xi32>
}

module @transforms attributes { transform.with_named_sequence } {
transform.named_sequence @__transform_main(%module: !transform.any_op {transform.consume}) {
%pack = transform.structured.match ops{["linalg.pack"]} in %module : (!transform.any_op) -> !transform.any_op
%unpack = transform.structured.match ops{["linalg.unpack"]} in %module : (!transform.any_op) -> !transform.any_op

// 1.1 Tile the linalg.pack Op so that we can decompose it into e.g. tensor.pad
// and other lower-level Ops (see step 2.1)
%tiled_pack_op_p, %loops_pack:2 = transform.structured.tile_using_for %pack tile_sizes [1, 1]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)

// 1.2 Tile the linalg.unpack Op so that we can decompose it into e.g. tensor.pad
// and other lower-level Ops (see step 2)
%tiled_unpack_op_p, %loops_unpack:2 = transform.structured.tile_using_for %unpack tile_sizes [4, 1]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)

// 2.1. Decompose tiled PackOp into lower-level Ops
%func_op_pack = transform.get_parent_op %tiled_pack_op_p {isolated_from_above} : (!transform.any_op) -> !transform.op<"func.func">
transform.apply_patterns to %func_op_pack {
transform.apply_patterns.linalg.decompose_pack_unpack
transform.apply_patterns.linalg.decompose_pad
} : !transform.op<"func.func">

transform.apply_patterns to %func_op_pack {
transform.apply_patterns.tensor.fold_tensor_subset_ops
transform.apply_patterns.canonicalization
} : !transform.op<"func.func">

// 2.1. Decompose tiled UnpackOp into lower-level Ops
%func_op_unpack = transform.get_parent_op %tiled_unpack_op_p {isolated_from_above} : (!transform.any_op) -> !transform.op<"func.func">
transform.apply_patterns to %func_op_unpack {
transform.apply_patterns.linalg.decompose_pack_unpack
} : !transform.op<"func.func">

transform.apply_patterns to %func_op_unpack {
transform.apply_patterns.tensor.fold_tensor_subset_ops
transform.apply_patterns.canonicalization
} : !transform.op<"func.func">

// 3. Bufferize before lowering to LLVM
%bufferize = transform.bufferization.one_shot_bufferize %module
{bufferize_function_boundaries=true} : (!transform.any_op) -> !transform.any_op

// 4. Canonicalize
%func_op_bufferized = transform.structured.match ops{["func.func"]} in %bufferize : (!transform.any_op) -> !transform.op<"func.func">
transform.apply_patterns to %func_op_bufferized {
transform.apply_patterns.canonicalization
} : !transform.op<"func.func">

transform.yield
}
}

func.func private @printMemrefI32(%ptr : tensor<*xi32>)
func.func private @setArmVLBits(%bits : i32)