Skip to content

LLaVa 1.5 and 1.6 not working with text-only inputs #35424

@giobin

Description

@giobin

System Info

  • transformers version: 4.47.1
  • Platform: Linux-5.15.0-113-generic-x86_64-with-glibc2.35
  • Python version: 3.12.5
  • Huggingface_hub version: 0.26.1
  • Safetensors version: 0.4.5
  • Accelerate version: 0.34.2
  • Accelerate config: - compute_environment: LOCAL_MACHINE
    - distributed_type: MULTI_GPU
    - mixed_precision: bf16
    - use_cpu: False
    - debug: False
    - num_processes: 4
    - machine_rank: 0
    - num_machines: 1
    - gpu_ids: 0,1,2,3
    - rdzv_backend: static
    - same_network: True
    - main_training_function: main
    - enable_cpu_affinity: False
    - downcast_bf16: no
    - tpu_use_cluster: False
    - tpu_use_sudo: False
    - tpu_env: []
  • PyTorch version (GPU?): 2.4.1 (True)
  • Tensorflow version (GPU?): not installed (NA)
  • Flax version (CPU?/GPU?/TPU?): not installed (NA)
  • Jax version: not installed
  • JaxLib version: not installed
  • Using distributed or parallel set-up in script?: NO
  • Using GPU in script?: YES
  • GPU type: NVIDIA A40

Who can help?

@zucchini-nlp, @amyeroberts

Information

  • The official example scripts
  • My own modified scripts

Tasks

  • An officially supported task in the examples folder (such as GLUE/SQuAD, ...)
  • My own task or dataset (give details below)

Reproduction

When using text-only inputs with the LLaVa 1.5 and 1.6 family we get an error. I think the issue has already been brought up here bug but the error is different here. Also this is an interesting discussion. The simple code to reproduce:

import torch

import requests
from PIL import Image

from transformers import (
    AutoModelForVision2Seq,
    AutoProcessor
)

MODEL_ID = "llava-hf/llava-v1.6-vicuna-7b-hf" #"llava-hf/llava-1.5-7b-hf"

model = AutoModelForVision2Seq.from_pretrained(MODEL_ID).to(0, torch.bfloat16)
processor = AutoProcessor.from_pretrained(MODEL_ID)

image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(images=[raw_image, None], text=["<image> what do you see in the image?", "Do you think that 2+2 is equal to 4?"], padding=True, return_tensors='pt').to(0, torch.bfloat16)

output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=False))

The error we get:

Loading checkpoint shards: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00,  1.31it/s]
Traceback (most recent call last):
  File "/mnt/llmdata/home/gbonetta/progetti/kimera/test_kimera_checkpoint.py", line 25, in <module>
    inputs = processor(images=[raw_image, None], text=["<image> what do you see in the image?", "Do you think that 2+2 is equal to 4?"], padding=True, return_tensors='pt').to(0, torch.bfloat16)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/mnt/llmdata/home/gbonetta/miniconda3/miniconda/envs/llava_env/lib/python3.12/site-packages/transformers/models/llava_next/processing_llava_next.py", line 133, in __call__
    images, text = _validate_images_text_input_order(images, text)
                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/mnt/llmdata/home/gbonetta/miniconda3/miniconda/envs/llava_env/lib/python3.12/site-packages/transformers/processing_utils.py", line 1205, in _validate_images_text_input_order
    raise ValueError("Invalid input type. Check that `images` and/or `text` are valid inputs.")
ValueError: Invalid input type. Check that `images` and/or `text` are valid inputs.

Expected behavior

The model should run using the image features when provided.

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions