Skip to content

Text Only input using LlaVa Next #35421

@sinngam-khaidem

Description

@sinngam-khaidem

System Info

  • transformers version: 4.47.1
  • Platform: Linux-5.4.0-113-generic-x86_64-with-glibc2.39
  • Python version: 3.11.11
  • Huggingface_hub version: 0.27.0
  • Safetensors version: 0.4.5
  • Accelerate version: 1.2.1
  • Accelerate config: not found
  • PyTorch version (GPU?): 2.5.1 (True)
  • Tensorflow version (GPU?): not installed (NA)
  • Flax version (CPU?/GPU?/TPU?): not installed (NA)
  • Jax version: not installed
  • JaxLib version: not installed
  • Using distributed or parallel set-up in script?: No
  • Using GPU in script?: Yes
  • GPU type: NVIDIA A100-SXM4-80GB

Who can help?

No response

Information

  • The official example scripts
  • My own modified scripts

Tasks

  • An officially supported task in the examples folder (such as GLUE/SQuAD, ...)
  • My own task or dataset (give details below)

Reproduction

  1. Code Snippet
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import torch

processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")

model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16)
model.to("cuda:0")  # Use GPU if available

conversation = [
    {"role": "user", "content": [{"type": "text", "text": "What is the capital of France?"}]},
    {"role": "assistant", "content": [{"type": "text", "text": "The capital of France is Paris."}]},
    {"role": "user", "content": [{"type": "text", "text": "What is the capital of India?"}]},
]

text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)

prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(text = prompt, images=None,  return_tensors="pt").to("cuda:0")

output = model.generate(**inputs, max_new_tokens=100)

generated_text = processor.decode(output[0], skip_special_tokens=True)
print(generated_text)
  1. Error Message
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:00<00:00,  6.30it/s]
Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.
Expanding inputs for image tokens in LLaVa-NeXT should be done in processing. Please add `patch_size` and `vision_feature_select_strategy` to the model's processing config or set directly with `processor.patch_size = {{patch_size}}` and processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. Using processors without these attributes in the config is deprecated and will throw an error in v4.50.
Traceback (most recent call last):
  File "/home/gpuuser3/reddit_data_annotation/Llava_play.py", line 20, in <module>
    output = model.generate(**inputs, max_new_tokens=100)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/gpuuser3/miniconda3/envs/mmsd_annotation/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
    return func(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^
  File "/home/gpuuser3/miniconda3/envs/mmsd_annotation/lib/python3.11/site-packages/transformers/generation/utils.py", line 2252, in generate
    result = self._sample(
             ^^^^^^^^^^^^^
  File "/home/gpuuser3/miniconda3/envs/mmsd_annotation/lib/python3.11/site-packages/transformers/generation/utils.py", line 3251, in _sample
    outputs = self(**model_inputs, return_dict=True)
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/gpuuser3/miniconda3/envs/mmsd_annotation/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/gpuuser3/miniconda3/envs/mmsd_annotation/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/gpuuser3/miniconda3/envs/mmsd_annotation/lib/python3.11/site-packages/transformers/models/llava_next/modeling_llava_next.py", line 874, in forward
    inputs_embeds = inputs_embeds.to(image_features.dtype)
                                     ^^^^^^^^^^^^^^^^^^^^
AttributeError: 'NoneType' object has no attribute 'dtype'

Expected behavior

I was trying to generate a response using pure-text input. I was assuming that simply setting images=None in processor() function call would achieve this. But it gives the mentioned error. Is there something I'm missing here?

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions