- 
                Notifications
    You must be signed in to change notification settings 
- Fork 0
UniformRKHSConvergence
A Hilbert space 
- For every $x \in D$ , the function$k_x(\cdot) = k(\cdot, x)$ belongs to$H$ .
- For every $x \in D$ and every$f \in H$ , the reproducing property holds:$f(x) = \langle f, k_x \rangle_H$ .
The function 
A sequence of functions 
- Orthonormality: For all indices $n, m$ ,$\langle e_n, e_m \rangle_H = \delta_{nm}$ , where$\delta_{nm}$ is the Kronecker delta.
- Completeness: The span of ${e_n}_{n=1}^{\infty}$ is dense in$H$ , which means: a. For any$f \in H$ , if$\langle f, e_n \rangle_H = 0$ for all$n$ , then$f = 0$ . b. Equivalently, every function$f \in H$ can be represented as
with convergence in the 
- Parseval's Identity: For any $f \in H$ ,
In an RKHS, each basis function satisfies the reproducing property: 
Let 
- 
${e_n}_{n=1}^{\infty}$ is an orthonormal basis of$H$ as defined above.
- The kernel is uniformly bounded on $D$ ; that is, there exists a constant$M > 0$ such that
Then for any function 
where 
converge uniformly to 
By the completeness property of the orthonormal basis, every function 
Using the Cauchy-Schwarz inequality:
Taking the supremum over 
By the uniform boundedness assumption:
From the convergence property of orthonormal bases:
For any 
Then for all 
Thus:
- 
The uniform boundedness condition on $|k(\cdot, x)|_H$ is essential. Without it, norm convergence in the RKHS does not guarantee uniform convergence of evaluations on$D$ . This condition ensures the kernel's feature maps are uniformly bounded across the entire domain.
- 
The domain $D$ need not be compact. The result holds for arbitrary domains (e.g.,$D = \mathbb{R}^n$ ) as long as$\sup_{x \in D} |k(\cdot, x)|_H \le M$ .
- 
The uniform convergence applies to expansions of functions $f \in H$ in any orthonormal basis. For expansions of the kernel$k(x, y)$ itself, uniform convergence holds only for the Mercer eigenbasis${e_n^*}$ satisfying:
Non-Mercer bases yield pointwise convergence.
- 
Riesz, F. (1907). Sur les systèmes orthogonaux de fonctions. Comptes rendus de l'Académie des sciences, 144:615--619. 
- 
Fischer, E. (1907). Sur la convergence en moyenne. Comptes rendus de l'Académie des sciences, 144:1022--1024. 
- 
Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical Society, 68(3):337--404. 
- 
Berlinet, A. and Thomas-Agnan, C. (2004). Reproducing Kernel Hilbert Spaces in Probability and Statistics. Springer, Boston, MA.