Skip to content

zhenglecheng/CARE-demo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🌐 CARE: Cluster-Aware Graph Anomaly Detection

Official demo code for the paper "Cluster-Aware Graph Anomaly Detection"
This repository provides the implementation and example experiments for reproducing results on benchmark datasets such as Amazon, BlogCatalog, IMDB, and DBLP.


🧠 Overview

CARE (Cluster-Aware Graph Anomaly Detection) is designed to detect anomalous nodes in graphs by leveraging both structural and cluster-level semantic information. The method jointly models local neighborhood consistency and global cluster awareness to effectively identify anomalies across diverse graph datasets by augmenting the graph adjacency matrix with pseudo-labels derived from soft cluster memberships. To mitigate potential bias from these pseudo-labels, CARE introduces a similarity-guided loss, theoretically shown to be a variant of contrastive learning loss connected to spectral clustering.

CARE Overview

CARE Overview

⚙️ Requirements

Before running the demo, please ensure you have the following packages installed:

Install all dependencies with:

  pip install torch scikit-learn scipy

📦 Dataset Preparation

Before running any experiments, please unzip the dataset archive so the code can access the data files:

  unzip data.zip

This will create a data/ directory (or add files into it) containing the datasets used by the demo, including:

  • Amazon
  • BlogCatalog
  • imdb
  • dblp

Make sure the directory structure matches what main.py expects (e.g., data/Amazon/...).


🚀 Run the Demo

To reproduce the experimental results on each dataset, run:

Dataset Command
Amazon python main.py --dataset Amazon
BlogCatalog python main.py --dataset BlogCatalog
IMDB python main.py --dataset imdb
DBLP python main.py --dataset dblp

Each command will run training and evaluation for CARE on the chosen dataset and should save results (check your results/ or logs/ directory if present).


📊 Experimental Results

CARE demonstrates strong performance on benchmark datasets by capturing both cluster-level and structural anomalies.

🧩 Results on Multi-View Graphs (CERT, IMDB, DBLP)

Method CERT AUPRC CERT AUROC IMDB AUPRC IMDB AUROC DBLP AUPRC DBLP AUROC
MLRA 0.0379 +/- 0.001 0.3829 +/- 0.003 0.2695 +/- 0.007 0.5926 +/- 0.005 0.2211 +/- 0.005 0.5568 +/- 0.005
NSNMF 0.0704 +/- 0.001 0.4578 +/- 0.001 0.0634 +/- 0.000 0.4969 +/- 0.001 0.1436 +/- 0.007 0.6418 +/- 0.001
NCMOD 0.0749 +/- 0.001 0.5133 +/- 0.001 0.6629 +/- 0.013 0.8030 +/- 0.007 0.4809 +/- 0.006 0.7271 +/- 0.004
SRSLP 0.0806 +/- 0.007 0.5405 +/- 0.003 0.5552 +/- 0.017 0.7343 +/- 0.003 0.0643 +/- 0.002 0.5228 +/- 0.001
TAM 0.0771 +/- 0.007 0.5400 +/- 0.005 0.6521 +/- 0.016 0.8233 +/- 0.013 0.3466 +/- 0.016 0.6690 +/- 0.005
CARE 0.1198 +/- 0.003 0.6056 +/- 0.001 0.8968 +/- 0.038 0.9370 +/- 0.029 0.8495 +/- 0.005 0.8696 +/- 0.006

🧮 Results on Single-View Graphs (BlogCatalog, Amazon, YelpChi)

Method BlogCatalog AUPRC BlogCatalog AUROC Amazon AUPRC Amazon AUROC YelpChi AUPRC YelpChi AUROC
ANOMALOUS 0.0652 +/- 0.005 0.5652 +/- 0.025 0.0558 +/- 0.001 0.4457 +/- 0.005 0.0519 +/- 0.002 0.4956 +/- 0.003
Dominant 0.3102 +/- 0.011 0.7590 +/- 0.010 0.1424 +/- 0.002 0.5996 +/- 0.002 0.0395 +/- 0.020 0.4133 +/- 0.100
CoLA 0.3270 +/- 0.000 0.7746 +/- 0.009 0.0677 +/- 0.001 0.5898 +/- 0.011 0.0448 +/- 0.002 0.4636 +/- 0.001
SLGAD 0.3882 +/- 0.007 0.8123 +/- 0.002 0.0634 +/- 0.005 0.5937 +/- 0.005 0.0350 +/- 0.000 0.3312 +/- 0.035
HCM-A 0.3139 +/- 0.001 0.7980 +/- 0.004 0.0527 +/- 0.015 0.3956 +/- 0.014 0.0287 +/- 0.012 0.4593 +/- 0.005
ComGA 0.3293 +/- 0.028 0.7683 +/- 0.004 0.1153 +/- 0.005 0.5895 +/- 0.010 0.0423 +/- 0.000 0.4391 +/- 0.000
CONAD 0.3284 +/- 0.004 0.7807 +/- 0.003 0.1372 +/- 0.009 0.6142 +/- 0.008 0.0405 +/- 0.002 0.4588 +/- 0.003
TAM 0.4182 +/- 0.225 0.8248 +/- 0.003 0.2634 +/- 0.008 0.7064 +/- 0.008 0.0778 +/- 0.009 0.5643 +/- 0.007
CARE 0.4043 +/- 0.010 0.8194 +/- 0.003 0.6563 +/- 0.011 0.8656 +/- 0.002 0.1218 +/- 0.003 0.7516 +/- 0.003

🧩 Citation

If you use this code or ideas from the paper, please cite:

@inproceedings{DBLP:conf/www/ZhengBWZH25,
  author       = {Lecheng Zheng and
                  John R. Birge and
                  Haiyue Wu and
                  Yifang Zhang and
                  Jingrui He},
  editor       = {Guodong Long and
                  Michale Blumestein and
                  Yi Chang and
                  Liane Lewin{-}Eytan and
                  Zi Helen Huang and
                  Elad Yom{-}Tov},
  title        = {Cluster Aware Graph Anomaly Detection},
  booktitle    = {Proceedings of the {ACM} on Web Conference 2025, {WWW} 2025, Sydney,
                  NSW, Australia, 28 April 2025- 2 May 2025},
  pages        = {1771--1782},
  publisher    = {{ACM}},
  year         = {2025},
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages