DataSet From Kaggle - Cat and Dog
Note: dataset is too large to be included directly. Please download it yourself from the provided Kaggle link.
(also provided Traditional Chinese version document README-CH.md.)
Using ResNet50 as a feature extractor and adding additional neural network layers, the model classifies images of cats and dogs, with the final output consisting of 2 neurons representing the cat and dog classes.
- Language: Python v3.10.12
- Package: Tensorflow
- Model: CNN(ResNet50)
The model uses Cross Entropy as the loss function, Adam optimizer with a learning rate of 0.0001, and applies data augmentation to reduce overfitting by generating variations of the training images.
OPERATION DATA DIMENSIONS WEIGHTS(N) WEIGHTS(%)
Input ##### 3 224 224
InputLayer | ---------------- 0 0.0%
##### 3 224 224
ResNet50 (Base) \|/ ---------------- 2359808 1.7%
- ##### 512 224 224
MaxPooling2D Y max ---------------- 0 0.0%
##### 512 112 112
Convolution2D \|/ ---------------- 147584 0.1%
relu ##### 128 112 112
MaxPooling2D Y max ---------------- 0 0.0%
##### 128 56 56
Flatten ||||| ---------------- 0 0.0%
##### 50176
Dense XXXXX ---------------- 1605696 74.3%
relu ##### 32
Dropout ||||| ---------------- 0 0.0%
##### 32
Dense XXXXX ---------------- 64 2.8%
relu ##### 2
Dense XXXXX ---------------- 64 2.8%
softmax ##### 2