Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 8 additions & 3 deletions vllm/model_executor/model_loader/loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -147,15 +147,20 @@ def _get_model_initialization_kwargs(
return extra_kwargs


def build_model(model_class: Type[nn.Module], hf_config: PretrainedConfig,
def build_model(model_class: Type[nn.Module],
hf_config: PretrainedConfig,
cache_config: Optional[CacheConfig],
quant_config: Optional[QuantizationConfig], *,
quant_config: Optional[QuantizationConfig],
*,
lora_config: Optional[LoRAConfig],
multimodal_config: Optional[MultiModalConfig],
scheduler_config: Optional[SchedulerConfig]) -> nn.Module:
scheduler_config: Optional[SchedulerConfig],
prefix: Optional[str] = None) -> nn.Module:
extra_kwargs = _get_model_initialization_kwargs(model_class, lora_config,
multimodal_config,
scheduler_config)
if prefix:
extra_kwargs["prefix"] = prefix

return model_class(config=hf_config,
cache_config=cache_config,
Expand Down
5 changes: 4 additions & 1 deletion vllm/model_executor/models/blip2.py
Original file line number Diff line number Diff line change
Expand Up @@ -507,7 +507,10 @@ def __init__(self,
)

self.language_model = init_vllm_registered_model(
config.text_config, cache_config, quant_config)
config.text_config,
cache_config,
quant_config,
prefix="language_model")

self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors)
Expand Down
58 changes: 39 additions & 19 deletions vllm/model_executor/models/gemma.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,8 @@

from .interfaces import SupportsLoRA, SupportsPP
from .utils import (is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers)
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)

logger = init_logger(__name__)

Expand Down Expand Up @@ -83,16 +84,23 @@ def __init__(
hidden_act: Optional[str] = None,
hidden_activation: Optional[str] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size, [intermediate_size] * 2,
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config)
self.down_proj = RowParallelLinear(intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config)
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.down_proj",
)
self.act_fn = _get_gemma_act_fn(hidden_act, hidden_activation)

def forward(self, x):
Expand All @@ -104,15 +112,18 @@ def forward(self, x):

class GemmaAttention(nn.Module):

def __init__(self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
head_dim: int,
max_position_embeddings: int = 8192,
rope_theta: float = 10000,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None) -> None:
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
head_dim: int,
max_position_embeddings: int = 8192,
rope_theta: float = 10000,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
Expand Down Expand Up @@ -142,12 +153,14 @@ def __init__(self,
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)

self.rotary_emb = get_rope(
Expand Down Expand Up @@ -186,6 +199,7 @@ def __init__(
config: GemmaConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
Expand All @@ -198,13 +212,15 @@ def __init__(
rope_theta=config.rope_theta,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
self.mlp = GemmaMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
hidden_activation=getattr(config, "hidden_activation", None),
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self.input_layernorm = GemmaRMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
Expand Down Expand Up @@ -259,8 +275,8 @@ def __init__(
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: GemmaDecoderLayer(config, cache_config, quant_config
),
lambda prefix: GemmaDecoderLayer(
config, cache_config, quant_config, prefix=prefix),
prefix=f"{prefix}.layers")
self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

Expand Down Expand Up @@ -366,6 +382,7 @@ def __init__(
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
lora_config: Optional[LoRAConfig] = None,
prefix: str = "",
) -> None:
super().__init__()

Expand All @@ -375,7 +392,10 @@ def __init__(
self.lora_config = lora_config

self.quant_config = quant_config
self.model = GemmaModel(config, cache_config, quant_config)
self.model = GemmaModel(config,
cache_config,
quant_config,
prefix=maybe_prefix(prefix, "model"))
self.logits_processor = LogitsProcessor(config.vocab_size)
self.sampler = Sampler()
self.make_empty_intermediate_tensors = (
Expand Down
56 changes: 39 additions & 17 deletions vllm/model_executor/models/internlm2.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,8 @@

from .interfaces import SupportsPP
from .utils import (is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers)
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)


class InternLM2MLP(nn.Module):
Expand All @@ -41,16 +42,23 @@ def __init__(
intermediate_size: int,
hidden_act: str,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size, [intermediate_size] * 2,
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
self.w2 = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config)
self.w2 = RowParallelLinear(intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config)
quant_config=quant_config,
prefix=f"{prefix}.w2",
)
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now.")
Expand All @@ -75,6 +83,7 @@ def __init__(
max_position_embeddings: int = 8192,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = hidden_size
Expand Down Expand Up @@ -108,12 +117,14 @@ def __init__(
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.wqkv",
)
self.wo = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.wo",
)

self.rotary_emb = get_rope(
Expand All @@ -123,12 +134,15 @@ def __init__(
base=rope_theta,
rope_scaling=rope_scaling,
)
self.attn = Attention(self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)

def split_qkv(self, qkv: torch.Tensor):
seq_len = qkv.shape[0]
Expand Down Expand Up @@ -176,6 +190,7 @@ def __init__(
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
Expand All @@ -192,12 +207,14 @@ def __init__(
max_position_embeddings=max_position_embeddings,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attention",
)
self.feed_forward = InternLM2MLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
)
self.attention_norm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
Expand Down Expand Up @@ -251,8 +268,8 @@ def __init__(
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: InternLMDecoderLayer(config, cache_config,
quant_config),
lambda prefix: InternLMDecoderLayer(
config, cache_config, quant_config, prefix=prefix),
prefix=f"{prefix}.layers")
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.make_empty_intermediate_tensors = (
Expand Down Expand Up @@ -306,14 +323,19 @@ def __init__(
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.quant_config = quant_config
self.model = InternLM2Model(config, cache_config, quant_config)
self.model = InternLM2Model(config,
cache_config,
quant_config,
prefix=maybe_prefix(prefix, "model"))
self.output = ParallelLMHead(config.vocab_size,
config.hidden_size,
quant_config=quant_config)
quant_config=quant_config,
prefix=maybe_prefix(prefix, "output"))
if self.config.tie_word_embeddings:
self.output.weight = self.model.tok_embeddings.weight
self.logits_processor = LogitsProcessor(config.vocab_size)
Expand Down
16 changes: 12 additions & 4 deletions vllm/model_executor/models/internlm2_ve.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
InternLM2MLP, InternLM2Model)
from vllm.sequence import IntermediateTensors

from .utils import make_layers
from .utils import make_layers, maybe_prefix


class InternLM2VEDecoderLayer(nn.Module):
Expand All @@ -25,6 +25,7 @@ def __init__(
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
Expand All @@ -41,18 +42,21 @@ def __init__(
max_position_embeddings=max_position_embeddings,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attention",
)
self.feed_forward = InternLM2MLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
)
self.feed_forward_ve = InternLM2MLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward_ve",
)
self.attention_norm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
Expand Down Expand Up @@ -111,8 +115,8 @@ def __init__(
super().__init__(config, cache_config, quant_config)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: InternLM2VEDecoderLayer(config, cache_config,
quant_config),
lambda prefix: InternLM2VEDecoderLayer(
config, cache_config, quant_config, prefix=prefix),
prefix=f"{prefix}.layers")

def forward(
Expand Down Expand Up @@ -161,6 +165,10 @@ def __init__(
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__(config, cache_config, quant_config)
self.model = InternLM2VEModel(config, cache_config, quant_config)
self.model = InternLM2VEModel(config,
cache_config,
quant_config,
prefix=maybe_prefix(prefix, "model"))
5 changes: 4 additions & 1 deletion vllm/model_executor/models/internvl.py
Original file line number Diff line number Diff line change
Expand Up @@ -439,7 +439,10 @@ def __init__(self,
)

self.language_model = init_vllm_registered_model(
config.text_config, cache_config, quant_config)
config.text_config,
cache_config,
quant_config,
prefix="language_model")

self.mlp1 = self._init_mlp1(config)

Expand Down
Loading