-
-
Notifications
You must be signed in to change notification settings - Fork 11k
Add support for GPT-NeoX (Pythia) #50
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from 4 commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,278 @@ | ||
| """1D GPT-NeoX model compatible with HuggingFace weights.""" | ||
| import os | ||
| import glob | ||
| import filelock | ||
| from tqdm import tqdm | ||
| from typing import Dict, List, Optional, Tuple | ||
|
|
||
| import numpy as np | ||
| import torch | ||
| from torch import nn | ||
| from huggingface_hub import snapshot_download | ||
|
|
||
| from cacheflow.models import InputMetadata | ||
| from cacheflow.models.attention import GPTNeoXCacheFlowAttention | ||
| from cacheflow.models.sample import Sampler | ||
| from cacheflow.parallel_utils.parallel_state import ( | ||
| get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size) | ||
| from cacheflow.parallel_utils.tensor_parallel import (VocabParallelEmbedding, | ||
| ColumnParallelLinear, | ||
| RowParallelLinear) | ||
| from cacheflow.sequence import SequenceOutputs | ||
|
|
||
| KVCache = Tuple[torch.Tensor, torch.Tensor] | ||
|
|
||
|
|
||
| class GPTNeoXAttention(nn.Module): | ||
|
|
||
| def __init__(self, config): | ||
| super().__init__() | ||
| self.total_num_heads = config.num_attention_heads | ||
| self.hidden_size = config.hidden_size | ||
| self.head_size = self.hidden_size // self.total_num_heads | ||
|
|
||
| tensor_model_parallel_world_size = get_tensor_model_parallel_world_size() | ||
| assert self.total_num_heads % tensor_model_parallel_world_size == 0 | ||
| self.num_heads = self.total_num_heads // tensor_model_parallel_world_size | ||
|
|
||
| self.query_key_value = ColumnParallelLinear(config.hidden_size, | ||
| 3 * config.hidden_size, | ||
| gather_output=False, | ||
| perform_initialization=False) | ||
| self.dense = RowParallelLinear(config.hidden_size, config.hidden_size, | ||
| input_is_parallel=True, | ||
| perform_initialization=False) | ||
|
|
||
| scaling = self.head_size ** -0.5 | ||
| rotary_dim = int(self.head_size * config.rotary_pct) | ||
| assert rotary_dim % 2 == 0 | ||
| self.attn = GPTNeoXCacheFlowAttention(scaling, rotary_dim) | ||
|
|
||
| def forward( | ||
| self, | ||
| position_ids: torch.LongTensor, | ||
| hidden_states: torch.Tensor, | ||
| kv_cache: KVCache, | ||
| input_metadata: InputMetadata, | ||
| cache_event: Optional[torch.cuda.Event], | ||
| ) -> torch.Tensor: | ||
| qkv, _ = self.query_key_value(hidden_states) | ||
|
|
||
| q, k, v = qkv.chunk(chunks=3, dim=-1) | ||
| k_cache, v_cache = kv_cache | ||
| attn_output = self.attn( | ||
| position_ids, q, k, v, k_cache, v_cache, input_metadata, cache_event) | ||
| output, _ = self.dense(attn_output) | ||
| return output | ||
|
|
||
|
|
||
| class GPTNeoXMLP(nn.Module): | ||
| def __init__(self, config): | ||
| super().__init__() | ||
| self.dense_h_to_4h = ColumnParallelLinear(config.hidden_size, | ||
| config.intermediate_size, | ||
| gather_output=False, | ||
| perform_initialization=False) | ||
| self.dense_4h_to_h = RowParallelLinear(config.intermediate_size, config.hidden_size, | ||
| input_is_parallel=True, | ||
| perform_initialization=False) | ||
| if config.hidden_act != 'gelu': | ||
| raise ValueError(f'Unsupported activation: {config.hidden_act}. ' | ||
| 'Only gelu is supported for now.') | ||
| self.act = torch.nn.GELU() | ||
|
|
||
| def forward(self, hidden_states): | ||
| hidden_states, _ = self.dense_h_to_4h(hidden_states) | ||
| hidden_states = self.act(hidden_states) | ||
| hidden_states, _ = self.dense_4h_to_h(hidden_states) | ||
| return hidden_states | ||
|
|
||
|
|
||
| class GPTNeoXLayer(nn.Module): | ||
|
|
||
| def __init__(self, config): | ||
| super().__init__() | ||
| self.use_parallel_residual = config.use_parallel_residual | ||
| self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | ||
| self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | ||
| self.attention = GPTNeoXAttention(config) | ||
| self.mlp = GPTNeoXMLP(config) | ||
|
|
||
| def forward( | ||
| self, | ||
| position_ids: torch.LongTensor, | ||
| hidden_states: torch.Tensor, | ||
| kv_cache: KVCache, | ||
| input_metadata: InputMetadata, | ||
| cache_event: Optional[torch.cuda.Event], | ||
| ) -> torch.Tensor: | ||
| attn_input = self.input_layernorm(hidden_states) | ||
| attn_output = self.attention( | ||
| position_ids=position_ids, | ||
| hidden_states=attn_input, | ||
| kv_cache=kv_cache, | ||
| input_metadata=input_metadata, | ||
| cache_event=cache_event, | ||
| ) | ||
|
|
||
| if self.use_parallel_residual: | ||
| # pseudocode: | ||
| # x = x + attn(ln1(x)) + mlp(ln2(x)) | ||
| mlp_input = self.post_attention_layernorm(hidden_states) | ||
| mlp_output = self.mlp(mlp_input) | ||
| hidden_states = mlp_output + attn_output + hidden_states | ||
| else: | ||
| # pseudocode: | ||
| # x = x + attn(ln1(x)) | ||
| # x = x + mlp(ln2(x)) | ||
| attn_output = attn_output + hidden_states | ||
| mlp_input = self.post_attention_layernorm(attn_output) | ||
| mlp_output = self.mlp(mlp_input) | ||
| hidden_states = mlp_output + attn_output | ||
| return hidden_states | ||
|
|
||
|
|
||
| class GPTNeoXModel(nn.Module): | ||
| def __init__(self, config): | ||
| super().__init__() | ||
| self.config = config | ||
|
|
||
| self.embed_in = VocabParallelEmbedding(config.vocab_size, config.hidden_size, | ||
| perform_initialization=False) | ||
| self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)]) | ||
| self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | ||
|
|
||
| def forward( | ||
| self, | ||
| input_ids: torch.LongTensor, | ||
| position_ids: torch.LongTensor, | ||
| kv_caches: List[KVCache], | ||
| input_metadata: InputMetadata, | ||
| cache_events: Optional[List[torch.cuda.Event]], | ||
| ) -> torch.Tensor: | ||
| hidden_states = self.embed_in(input_ids) | ||
| for i in range(len(self.layers)): | ||
| if cache_events is None: | ||
| cache_event = None | ||
| else: | ||
| cache_event = cache_events[i] | ||
| layer = self.layers[i] | ||
| hidden_states = layer( | ||
| position_ids, | ||
| hidden_states, | ||
| kv_caches[i], | ||
| input_metadata, | ||
| cache_event, | ||
| ) | ||
| hidden_states = self.final_layer_norm(hidden_states) | ||
| return hidden_states | ||
|
|
||
|
|
||
| class GPTNeoXForCausalLM(nn.Module): | ||
|
|
||
| def __init__(self, config): | ||
| super().__init__() | ||
| self.config = config | ||
| self.gpt_neox = GPTNeoXModel(config) | ||
| self.embed_out = ColumnParallelLinear(config.hidden_size, config.vocab_size, | ||
| bias=False, gather_output=False, | ||
| perform_initialization=False) | ||
| self.sampler = Sampler() | ||
|
|
||
| def forward( | ||
| self, | ||
| input_ids: torch.LongTensor, | ||
| positions: torch.LongTensor, | ||
| kv_caches: List[KVCache], | ||
| input_metadata: InputMetadata, | ||
| cache_events: Optional[List[torch.cuda.Event]], | ||
| ) -> Dict[int, SequenceOutputs]: | ||
| hidden_states = self.gpt_neox( | ||
| input_ids, positions, kv_caches, input_metadata, cache_events) | ||
| next_tokens = self.sampler( | ||
| self.embed_out.weight, hidden_states, input_metadata) | ||
| return next_tokens | ||
|
|
||
| _column_parallel_weights = ["embed_in.weight", "embed_out.weight", "dense_h_to_4h.weight", "dense_h_to_4h.bias"] | ||
| _row_parallel_weights = ["dense.weight", "dense_4h_to_h.weight"] | ||
|
|
||
| def load_weights(self, weights_path: str): | ||
| tensor_model_parallel_rank = get_tensor_model_parallel_rank() | ||
| state_dict = self.state_dict() | ||
| for name, param in state_dict.items(): | ||
| if "query_key_value" in name: | ||
| # NOTE(woosuk): GPT-NeoX's fused QKV has the shape of | ||
| # [num_heads * 3 * head_size, num_heads * head_size], while the | ||
| # required shape is [3 * num_heads * head_size, num_heads * head_size]. | ||
| # Thus, we need weight conversion. | ||
| loaded_weight = torch.from_numpy( | ||
| np.load(os.path.join(weights_path, name))) | ||
| shard_size = param.shape[0] | ||
| loaded_weight = loaded_weight[shard_size * tensor_model_parallel_rank | ||
| :shard_size * (tensor_model_parallel_rank + 1)] | ||
|
|
||
| num_heads = self.config.num_attention_heads | ||
| hidden_size = self.config.hidden_size | ||
| head_size = hidden_size // num_heads | ||
| if 'query_key_value.weight' in name: | ||
| loaded_weight = loaded_weight.view(-1, 3, head_size, hidden_size) | ||
| loaded_weight = loaded_weight.transpose(0, 1) | ||
| loaded_weight = loaded_weight.reshape(-1, hidden_size).contiguous() | ||
| elif 'query_key_value.bias' in name: | ||
| loaded_weight = loaded_weight.view(-1, 3, head_size) | ||
| loaded_weight = loaded_weight.transpose(0, 1) | ||
| loaded_weight = loaded_weight.reshape(-1).contiguous() | ||
| else: | ||
| assert False | ||
| else: | ||
| loaded_weight = torch.from_numpy( | ||
| np.load(os.path.join(weights_path, name))) | ||
| for p in self._column_parallel_weights: | ||
| if p in name: | ||
| shard_size = param.shape[0] | ||
| loaded_weight = loaded_weight[ | ||
| shard_size * tensor_model_parallel_rank | ||
| :shard_size * (tensor_model_parallel_rank + 1)] | ||
| break | ||
| for p in self._row_parallel_weights: | ||
| if p in name: | ||
| shard_size = param.shape[1] | ||
| loaded_weight = loaded_weight[ | ||
| :, | ||
| shard_size * tensor_model_parallel_rank | ||
| :shard_size * (tensor_model_parallel_rank + 1)] | ||
| break | ||
|
|
||
| assert param.shape == loaded_weight.shape | ||
| param.data.copy_(loaded_weight) | ||
|
|
||
| @staticmethod | ||
| def get_weights(model_name: str, path: str): | ||
| path = os.path.join(path, f"{model_name}-np") | ||
| path = os.path.abspath(os.path.expanduser(path)) | ||
| os.makedirs(path, exist_ok=True) | ||
| lock_path = os.path.join(path, "file_lock") | ||
| lock = filelock.FileLock(lock_path) | ||
|
|
||
| with lock: | ||
| test_weight_path = os.path.join( | ||
| path, "gpt_neox.embed_in.weight") | ||
| if os.path.exists(test_weight_path): | ||
| return path | ||
|
|
||
| folder = snapshot_download(model_name, allow_patterns="*.bin", | ||
| cache_dir=os.path.join(path, "cache")) | ||
| bin_files = glob.glob(os.path.join(folder, "*.bin")) | ||
|
|
||
| for bin_file in tqdm(bin_files, desc="Convert format"): | ||
| state = torch.load(bin_file, map_location="cpu") | ||
| for name, param in tqdm(state.items(), leave=False): | ||
| param_path = os.path.join(path, name) | ||
| with open(param_path, "wb") as f: | ||
| np.save(f, param.cpu().detach().numpy()) | ||
|
|
||
| return path | ||
|
|
||
| def initialize_dummy_weights(self) -> None: | ||
| for param in self.state_dict().values(): | ||
| param.data.uniform_(-0.1, 0.1) | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Nit: The U(-0.1, 0.1) initialization will lead to many out-of-ranges and NaNs during the model execution. Maybe use a smaller range like U(-1e-5, 1e-5)?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The (-0.1, 0.1) initialization actually works. However, to be cautious, I changed the range to (-1e-3, 1e-3).