Skip to content

[Feature]: AttributeError: Model MllamaForConditionalGeneration does not support BitsAndBytes quantization yet #9714

@CyrusCY

Description

@CyrusCY

Your current environment

Collecting environment information...
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.26.4
Libc version: glibc-2.31

Python version: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-122-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA H100 80GB HBM3

Model Input Dumps

vllm serve unsloth/Llama-3.2-90B-Vision-Instruct-bnb-4bit --quantization bitsandbytes --load-format bitsandbytes --trust-remote-code --enforce-eager

Initializing an LLM engine (v0.6.3.post1) with config: model='unsloth/Llama-3.2-90B-Vision-Instruct-bnb-4bit', speculative_config=None
, tokenizer='unsloth/Llama-3.2-90B-Vision-Instruct-bnb-4bit', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, rope_scaling=None,
rope_theta=None, tokenizer_revision=None, trust_remote_code=True, dtype=torch.bfloat16, max_seq_len=131072, download_dir=None, load_format=LoadFormat.BITSANDBYTES, tensor_pa
rallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=bitsandbytes, enforce_eager=True, kv_cache_dtype=auto, quantization_param_path=None, d
evice_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None, collect_model_forw
ard_time=False, collect_model_execute_time=False), seed=0, served_model_name=unsloth/Llama-3.2-90B-Vision-Instruct-bnb-4bit, num_scheduler_steps=1, chunked_prefill_enabled=F
alse multi_step_stream_outputs=True, enable_prefix_caching=False, use_async_output_proc=False, use_cached_outputs=True, mm_processor_kwargs=None)

🐛 Describe the bug

AttributeError: Model MllamaForConditionalGeneration does not support BitsAndBytes quantization yet

I was trying the Llama-3.2-90B-Vision-Instruct-bnb-4bit model, it shows such an error. Not sure which place is better to raise this issue, unsloth or transformers or just here.

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions