-
-
Notifications
You must be signed in to change notification settings - Fork 10.5k
Closed
Labels
actionableThere is clear action for a vLLM developer to takeThere is clear action for a vLLM developer to takebugSomething isn't workingSomething isn't workingtorch.compile
Description
Your current environment
The output of python collect_env.py
# For security purposes, please feel free to check the contents of collect_env.py before running it.
python collect_env.py
--2025-07-26 00:45:07-- https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 28526 (28K) [text/plain]
Saving to: ‘collect_env.py’
collect_env.py 100%[================================================================================================================================================================================================================================>] 27.86K --.-KB/s in 0.006s
2025-07-26 00:45:08 (4.52 MB/s) - ‘collect_env.py’ saved [28526/28526]
Collecting environment information...
==============================
System Info
==============================
OS : Ubuntu 22.04.5 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version : Could not collect
CMake version : version 3.22.1
Libc version : glibc-2.35
==============================
PyTorch Info
==============================
PyTorch version : 2.7.1+cu126
Is debug build : False
CUDA used to build PyTorch : 12.6
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.10.18 (main, Jun 5 2025, 13:14:17) [GCC 11.2.0] (64-bit runtime)
Python platform : Linux-6.8.0-60-generic-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 12.8.93
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA H100 80GB HBM3
GPU 1: NVIDIA H100 80GB HBM3
GPU 2: NVIDIA H100 80GB HBM3
GPU 3: NVIDIA H100 80GB HBM3
GPU 4: NVIDIA H100 80GB HBM3
GPU 5: NVIDIA H100 80GB HBM3
GPU 6: NVIDIA H100 80GB HBM3
GPU 7: NVIDIA H100 80GB HBM3
Nvidia driver version : 570.148.08
cuDNN version : Could not collect
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 208
On-line CPU(s) list: 0-207
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8480+
CPU family: 6
Model: 143
Thread(s) per core: 2
Core(s) per socket: 52
Socket(s): 2
Stepping: 8
BogoMIPS: 4000.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx_vnni avx512_bf16 wbnoinvd arat vnmi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b fsrm md_clear serialize tsxldtrk avx512_fp16 arch_capabilities
Virtualization: VT-x
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 6.5 MiB (208 instances)
L1i cache: 6.5 MiB (208 instances)
L2 cache: 416 MiB (104 instances)
L3 cache: 32 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-103
NUMA node1 CPU(s): 104-207
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Unknown: No mitigations
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; TSX disabled
==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pyzmq==27.0.0
[pip3] torch==2.7.1
[pip3] torchaudio==2.7.1
[pip3] torchvision==0.22.1
[pip3] transformers==4.54.0
[pip3] triton==3.3.1
[conda] numpy 2.2.6 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi
[conda] nvidia-cufile-cu12 1.11.1.6 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.26.2 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi
[conda] pyzmq 27.0.0 pypi_0 pypi
[conda] torch 2.7.1 pypi_0 pypi
[conda] torchaudio 2.7.1 pypi_0 pypi
[conda] torchvision 0.22.1 pypi_0 pypi
[conda] transformers 4.54.0 pypi_0 pypi
[conda] triton 3.3.1 pypi_0 pypi
==============================
vLLM Info
==============================
ROCM Version : Could not collect
Neuron SDK Version : N/A
vLLM Version : 0.10.0
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 SYS 0-103 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 SYS 0-103 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 SYS 0-103 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 SYS 0-103 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 SYS 104-207 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 SYS 104-207 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 SYS 104-207 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X SYS 104-207 1 N/A
NIC0 SYS SYS SYS SYS SYS SYS SYS SYS X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
==============================
Environment Variables
==============================
LD_LIBRARY_PATH=/usr/mpi/gcc/openmpi-4.1.7rc1/lib:/usr/mpi/gcc/openmpi-4.1.7rc1/lib64
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
I am on v0.10.0. The argument calculate_kv_scales=True
does not seem to work.
If enforce_eager=False
With code:
import vllm
def main():
engine = vllm.LLM(
model="/home/ubuntu/models/Qwen3-8B",
tensor_parallel_size=2,
kv_cache_dtype="fp8_e4m3",
calculate_kv_scales=True,
)
output = engine.generate("Hello, world!")
print(output)
if __name__ == "__main__":
main()
I run into
RuntimeError: Worker failed with error 'Data-dependent branching
Explanation: Detected data-dependent branching (e.g. `if my_tensor.sum() > 0:`). Dynamo does not support tracing dynamic control flow.
Hint: This graph break is fundamental - it is unlikely that Dynamo will ever be able to trace through your code. Consider finding a workaround.
Hint: Use `torch.cond` to express dynamic control flow.
Developer debug context: attempted to jump with GetAttrVariable(ConstantVariable(NoneType: None), enable_kv_scales_calculation)
from user code:
File "/home/ubuntu/miniconda3/envs/vllm-new/lib/python3.10/site-packages/vllm/model_executor/models/qwen2.py", line 354, in forward
hidden_states, residual = layer(
File "/home/ubuntu/miniconda3/envs/vllm-new/lib/python3.10/site-packages/vllm/model_executor/models/qwen3.py", line 214, in forward
hidden_states = self.self_attn(
File "/home/ubuntu/miniconda3/envs/vllm-new/lib/python3.10/site-packages/vllm/model_executor/models/qwen3.py", line 145, in forward
attn_output = self.attn(q, k, v)
File "/home/ubuntu/miniconda3/envs/vllm-new/lib/python3.10/site-packages/vllm/attention/layer.py", line 239, in forward
if attn_metadata.enable_kv_scales_calculation:
Full log here https://gist.github.com/CharlieFRuan/7bfa12f029ddeef496996e5864979530
If enforce_eager=True
With code:
import vllm
def main():
engine = vllm.LLM(
model="/home/ubuntu/models/Qwen3-8B",
tensor_parallel_size=2,
kv_cache_dtype="fp8_e4m3",
calculate_kv_scales=True,
enforce_eager=True,
)
output = engine.generate("Hello, world!")
print(output)
if __name__ == "__main__":
main()
I run into
(VllmWorker rank=1 pid=87573) ERROR 07-26 00:49:21 [multiproc_executor.py:546] File "/home/ubuntu/miniconda3/envs/vllm-new/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl
(VllmWorker rank=1 pid=87573) ERROR 07-26 00:49:21 [multiproc_executor.py:546] return forward_call(*args, **kwargs)
(VllmWorker rank=1 pid=87573) ERROR 07-26 00:49:21 [multiproc_executor.py:546] File "/home/ubuntu/miniconda3/envs/vllm-new/lib/python3.10/site-packages/vllm/attention/layer.py", line 239, in forward
(VllmWorker rank=1 pid=87573) ERROR 07-26 00:49:21 [multiproc_executor.py:546] if attn_metadata.enable_kv_scales_calculation:
(VllmWorker rank=1 pid=87573) ERROR 07-26 00:49:21 [multiproc_executor.py:546] AttributeError: 'NoneType' object has no attribute 'enable_kv_scales_calculation'
Full log here: https://gist.github.com/CharlieFRuan/6bd380cb135c35aa0a70b80cf9e6eebd
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
actionableThere is clear action for a vLLM developer to takeThere is clear action for a vLLM developer to takebugSomething isn't workingSomething isn't workingtorch.compile
Type
Projects
Status
Done