Skip to content

[Bug]: python sampler is faster than flashinfer sampler #18811

@ErykCh

Description

@ErykCh

Your current environment

The output of python collect_env.py
Your output of `python collect_env.py` here

🐛 Describe the bug

Hi,

vllm run from docker image.

Version 0.9.0 is much better but still slower.
In 0.8.5 python infer was about 2 token/sec faster than flash infer.

In 0.9.0 difference is on the level 0,5 token/sec

Python sampler

docker run --runtime nvidia --gpus all -d --name vllm-Qwen3-32B-v10 --restart unless-stopped -v ~/.cache/vllm:/root/.cache/vllm -v ~/.cache/huggingface:/root/.cache/huggingface -e VLLM_FLASH_ATTN_VERSION=2 -e VLLM_USE_V1=1 -e VLLM_USE_FLASHINFER_SAMPLER=0 -e VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE=1 -e VLLM_ATTENTION_BACKEND=FLASH_ATTN -e PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True -e VLLM_ENABLE_V1_MULTIPROCESSING=1 -e MAX_JOBS=32 -e VLLM_USE_PRECOMPILED=true -e RAY_ROTATION_MAX_BYTES=0 -e RAY_ROTATION_BACKUP_COUNT=0 -p 8000:8000 vllm/vllm-openai:v0.9.0 --model Qwen/Qwen3-32B-FP8 --served-model-name BSSTelcoChat experimental reasoning llm --max-model-len 26060 --max-seq-len-to-capture 26060 --max-num-batched-tokens 26060 --block-size 32 --gpu-memory-utilization 0.999999 --seed 0 --max-log-len 35 --enable-auto-tool-choice --tool-call-parser hermes --tokenizer-pool-size 64 --max-parallel-loading-workers 64 --long-prefill-token-threshold 1024 --max-num-partial-prefills 1 --max-num-seqs 128 --enable-prefix-caching --max-logprobs 0

INFO 05-27 23:31:40 [loggers.py:116] Engine 000: Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 15.6 tokens/s, Running: 1 reqs, Waiting: 0 reqs, GPU KV cache usage: 1.0%, Prefix cache hit rate: 0.0%

FlashInfer sampler

docker run --runtime nvidia --gpus all -d --name vllm-Qwen3-32B-v11 --restart unless-stopped -v ~/.cache/vllm:/root/.cache/vllm -v ~/.cache/huggingface:/root/.cache/huggingface -e VLLM_FLASH_ATTN_VERSION=2 -e VLLM_USE_V1=1 -e VLLM_USE_FLASHINFER_SAMPLER=1 -e VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE=1 -e VLLM_ATTENTION_BACKEND=FLASH_ATTN -e PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True -e VLLM_ENABLE_V1_MULTIPROCESSING=1 -e MAX_JOBS=32 -e VLLM_USE_PRECOMPILED=true -e RAY_ROTATION_MAX_BYTES=0 -e RAY_ROTATION_BACKUP_COUNT=0 -p 8000:8000 vllm/vllm-openai:v0.9.0 --model Qwen/Qwen3-32B-FP8 --served-model-name BSSTelcoChat experimental reasoning llm --max-model-len 26060 --max-seq-len-to-capture 26060 --max-num-batched-tokens 26060 --block-size 32 --gpu-memory-utilization 0.999999 --seed 0 --max-log-len 35 --enable-auto-tool-choice --tool-call-parser hermes --tokenizer-pool-size 64 --max-parallel-loading-workers 64 --long-prefill-token-threshold 1024 --max-num-partial-prefills 1 --max-num-seqs 128 --enable-prefix-caching --max-logprobs 0

INFO 05-27 23:27:09 [loggers.py:116] Engine 000: Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 15.1 tokens/s, Running: 1 reqs, Waiting: 0 reqs, GPU KV cache usage: 1.1%, Prefix cache hit rate: 0.0%

as I understand choosing next token by python code should be slower than doing this on gpu,
so something must be wrong with FlashInfer sampler

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions