-
-
Notifications
You must be signed in to change notification settings - Fork 10.6k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of `python collect_env.py`
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Amazon Linux 2023.6.20241121 (x86_64)
GCC version: (GCC) 11.4.1 20230605 (Red Hat 11.4.1-2)
Clang version: Could not collect
CMake version: version 3.22.2
Libc version: glibc-2.34
Python version: 3.12.7 | packaged by conda-forge | (main, Oct 4 2024, 16:05:46) [GCC 13.3.0] (64-bit runtime)
Python platform: Linux-6.1.115-126.197.amzn2023.x86_64-x86_64-with-glibc2.34
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
GPU 4: NVIDIA A100-SXM4-80GB
GPU 5: NVIDIA A100-SXM4-80GB
GPU 6: NVIDIA A100-SXM4-80GB
GPU 7: NVIDIA A100-SXM4-80GB
Nvidia driver version: 560.35.03
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 96
On-line CPU(s) list: 0-95
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz
CPU family: 6
Model: 85
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 2
Stepping: 7
BogoMIPS: 5999.99
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves ida arat pku ospke
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 1.5 MiB (48 instances)
L1i cache: 1.5 MiB (48 instances)
L2 cache: 48 MiB (48 instances)
L3 cache: 71.5 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-23,48-71
NUMA node1 CPU(s): 24-47,72-95
Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit: KVM: Mitigation: VMX unsupported
Vulnerability L1tf: Mitigation; PTE Inversion
Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Meltdown: Mitigation; PTI
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Vulnerable
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Retpoline
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.0
[pip3] torch==2.5.1
[pip3] torchvision==0.20.1
[pip3] transformers==4.47.1
[pip3] triton==3.1.0
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
[conda] nvidia-ml-py 12.560.30 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
[conda] pyzmq 26.2.0 pypi_0 pypi
[conda] torch 2.5.1 pypi_0 pypi
[conda] torchvision 0.20.1 pypi_0 pypi
[conda] transformers 4.47.1 pypi_0 pypi
[conda] triton 3.1.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.6.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PHB NODE NODE SYS SYS SYS SYS 0-23,48-71 0 N/A
GPU1 PHB X NODE NODE SYS SYS SYS SYS 0-23,48-71 0 N/A
GPU2 NODE NODE X PHB SYS SYS SYS SYS 0-23,48-71 0 N/A
GPU3 NODE NODE PHB X SYS SYS SYS SYS 0-23,48-71 0 N/A
GPU4 SYS SYS SYS SYS X PHB NODE NODE 24-47,72-95 1 N/A
GPU5 SYS SYS SYS SYS PHB X NODE NODE 24-47,72-95 1 N/A
GPU6 SYS SYS SYS SYS NODE NODE X PHB 24-47,72-95 1 N/A
GPU7 SYS SYS SYS SYS NODE NODE PHB X 24-47,72-95 1 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
LD_LIBRARY_PATH=/opt/conda/lib/python3.12/site-packages/cv2/../../lib64:/opt/amazon/efa/lib64:/opt/amazon/openmpi/lib64:/opt/aws-ofi-nccl/lib:/usr/local/cuda/lib:/usr/local/cuda:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/targets/x86_64-linux/lib:/usr/local/lib:/usr/lib:/lib:/opt/amazon/efa/lib64:/opt/amazon/openmpi/lib64:/opt/aws-ofi-nccl/lib:/usr/local/cuda/lib:/usr/local/cuda:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/targets/x86_64-linux/lib:/usr/local/lib:/usr/lib:/lib:/opt/amazon/efa/lib64:/opt/amazon/openmpi/lib64:/opt/aws-ofi-nccl/lib:/usr/local/cuda/lib:/usr/local/cuda:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/targets/x86_64-linux/lib:/usr/local/lib:/usr/lib:/lib
OMP_NUM_THREADS=48
CUDA_MODULE_LOADING=LAZY
Model Input Dumps
No response
🐛 Describe the bug
Here is what I encountered when trying to load into 2 GPUs on my EC2 through Vllm
It gave me this Can't pickle <class 'botocore.client.S3'>: attribute lookup S3 on botocore.client failed
It was setup following this guide: https://docs.vllm.ai/en/stable/serving/runai_model_streamer.html
AWS Credential was set through environment variables of AWS_ACCESS_KEY_ID
AWS_SECRET_ACCESS_KEY
and AWS_SESSION_TOKEN
Command line used:
vllm serve s3://llama/llama-3.1-8B --load-format runai_streamer --tensor-parallel-size 2 --model-loader-extra-config '{"concurrency":2}'
[ec2-user@ip-172-31-36-112 ~]$ vllm serve s3://llama/llama-3.1-8B --load-format runai_streamer --tensor-parallel-size 2 --model-loader-extra-config '{"concurrency":2}'
INFO 01-07 20:42:53 api_server.py:712] vLLM API server version 0.6.6.post1
INFO 01-07 20:42:53 api_server.py:713] args: Namespace(subparser='serve', model_tag='s3://llama/llama-3.1-8B', config='', host=None, port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_request_id_headers=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='s3://llama/llama-3.1-8B', task='auto', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, allowed_local_media_path=None, download_dir=None, load_format='runai_streamer', config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', quantization_param_path=None, max_model_len=None, guided_decoding_backend='xgrammar', logits_processor_pattern=None, distributed_executor_backend=None, worker_use_ray=False, pipeline_parallel_size=1, tensor_parallel_size=2, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=None, enable_prefix_caching=None, disable_sliding_window=False, use_v2_block_manager=True, num_lookahead_slots=0, seed=0, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.9, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_seqs=None, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=False, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_disable_mqa_scorer=False, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config='{"concurrency":2}', ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, scheduling_policy='fcfs', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, worker_cls='auto', generation_config=None, disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False, dispatch_function=<function serve at 0x7faf3ab7d940>)
INFO 01-07 20:42:53 api_server.py:199] Started engine process with PID 1982121
INFO 01-07 20:44:49 config.py:510] This model supports multiple tasks: {'classify', 'score', 'generate', 'embed', 'reward'}. Defaulting to 'generate'.
INFO 01-07 20:44:50 config.py:510] This model supports multiple tasks: {'embed', 'classify', 'reward', 'score', 'generate'}. Defaulting to 'generate'.
INFO 01-07 20:44:51 config.py:1310] Defaulting to use mp for distributed inference
WARNING 01-07 20:44:51 arg_utils.py:1103] Chunked prefill is enabled by default for models with max_model_len > 32K. Currently, chunked prefill might not work with some features or models. If you encounter any issues, please disable chunked prefill by setting --enable-chunked-prefill=False.
INFO 01-07 20:44:51 config.py:1458] Chunked prefill is enabled with max_num_batched_tokens=2048.
INFO 01-07 20:44:51 config.py:1310] Defaulting to use mp for distributed inference
WARNING 01-07 20:44:51 arg_utils.py:1103] Chunked prefill is enabled by default for models with max_model_len > 32K. Currently, chunked prefill might not work with some features or models. If you encounter any issues, please disable chunked prefill by setting --enable-chunked-prefill=False.
INFO 01-07 20:44:51 config.py:1458] Chunked prefill is enabled with max_num_batched_tokens=2048.
INFO 01-07 20:44:51 llm_engine.py:234] Initializing an LLM engine (v0.6.6.post1) with config: model='/tmp/tmprwsjgq9m', speculative_config=None, tokenizer='/tmp/tmptbmhhdeo', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=131072, download_dir=None, load_format=LoadFormat.RUNAI_STREAMER, tensor_parallel_size=2, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='xgrammar'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=s3://llama/llama-3.1-8B, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=False, chunked_prefill_enabled=True, use_async_output_proc=True, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={"splitting_ops":["vllm.unified_attention","vllm.unified_attention_with_output"],"candidate_compile_sizes":[],"compile_sizes":[],"capture_sizes":[256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"max_capture_size":256}, use_cached_outputs=True,
INFO 01-07 20:44:51 custom_cache_manager.py:17] Setting Triton cache manager to: vllm.triton_utils.custom_cache_manager:CustomCacheManager
ERROR 01-07 20:44:51 engine.py:366] Can't pickle <class 'botocore.client.S3'>: attribute lookup S3 on botocore.client failed
ERROR 01-07 20:44:51 engine.py:366] Traceback (most recent call last):
ERROR 01-07 20:44:51 engine.py:366] File "/opt/conda/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 357, in run_mp_engine
ERROR 01-07 20:44:51 engine.py:366] engine = MQLLMEngine.from_engine_args(engine_args=engine_args,
ERROR 01-07 20:44:51 engine.py:366] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 01-07 20:44:51 engine.py:366] File "/opt/conda/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 119, in from_engine_args
ERROR 01-07 20:44:51 engine.py:366] return cls(ipc_path=ipc_path,
ERROR 01-07 20:44:51 engine.py:366] ^^^^^^^^^^^^^^^^^^^^^^
ERROR 01-07 20:44:51 engine.py:366] File "/opt/conda/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 71, in __init__
ERROR 01-07 20:44:51 engine.py:366] self.engine = LLMEngine(*args, **kwargs)
ERROR 01-07 20:44:51 engine.py:366] ^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 01-07 20:44:51 engine.py:366] File "/opt/conda/lib/python3.12/site-packages/vllm/engine/llm_engine.py", line 273, in __init__
ERROR 01-07 20:44:51 engine.py:366] self.model_executor = executor_class(vllm_config=vllm_config, )
ERROR 01-07 20:44:51 engine.py:366] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 01-07 20:44:51 engine.py:366] File "/opt/conda/lib/python3.12/site-packages/vllm/executor/distributed_gpu_executor.py", line 26, in __init__
ERROR 01-07 20:44:51 engine.py:366] super().__init__(*args, **kwargs)
ERROR 01-07 20:44:51 engine.py:366] File "/opt/conda/lib/python3.12/site-packages/vllm/executor/executor_base.py", line 36, in __init__
ERROR 01-07 20:44:51 engine.py:366] self._init_executor()
ERROR 01-07 20:44:51 engine.py:366] File "/opt/conda/lib/python3.12/site-packages/vllm/executor/multiproc_gpu_executor.py", line 58, in _init_executor
ERROR 01-07 20:44:51 engine.py:366] worker = ProcessWorkerWrapper(
ERROR 01-07 20:44:51 engine.py:366] ^^^^^^^^^^^^^^^^^^^^^
ERROR 01-07 20:44:51 engine.py:366] File "/opt/conda/lib/python3.12/site-packages/vllm/executor/multiproc_worker_utils.py", line 167, in __init__
ERROR 01-07 20:44:51 engine.py:366] self.process.start()
ERROR 01-07 20:44:51 engine.py:366] File "/opt/conda/lib/python3.12/multiprocessing/process.py", line 121, in start
ERROR 01-07 20:44:51 engine.py:366] self._popen = self._Popen(self)
ERROR 01-07 20:44:51 engine.py:366] ^^^^^^^^^^^^^^^^^
ERROR 01-07 20:44:51 engine.py:366] File "/opt/conda/lib/python3.12/multiprocessing/context.py", line 289, in _Popen
ERROR 01-07 20:44:51 engine.py:366] return Popen(process_obj)
ERROR 01-07 20:44:51 engine.py:366] ^^^^^^^^^^^^^^^^^^
ERROR 01-07 20:44:51 engine.py:366] File "/opt/conda/lib/python3.12/multiprocessing/popen_spawn_posix.py", line 32, in __init__
ERROR 01-07 20:44:51 engine.py:366] super().__init__(process_obj)
ERROR 01-07 20:44:51 engine.py:366] File "/opt/conda/lib/python3.12/multiprocessing/popen_fork.py", line 19, in __init__
ERROR 01-07 20:44:51 engine.py:366] self._launch(process_obj)
ERROR 01-07 20:44:51 engine.py:366] File "/opt/conda/lib/python3.12/multiprocessing/popen_spawn_posix.py", line 47, in _launch
ERROR 01-07 20:44:51 engine.py:366] reduction.dump(process_obj, fp)
ERROR 01-07 20:44:51 engine.py:366] File "/opt/conda/lib/python3.12/multiprocessing/reduction.py", line 60, in dump
ERROR 01-07 20:44:51 engine.py:366] ForkingPickler(file, protocol).dump(obj)
ERROR 01-07 20:44:51 engine.py:366] _pickle.PicklingError: Can't pickle <class 'botocore.client.S3'>: attribute lookup S3 on botocore.client failed
Process SpawnProcess-1:
Traceback (most recent call last):
File "/opt/conda/lib/python3.12/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/opt/conda/lib/python3.12/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/opt/conda/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 368, in run_mp_engine
raise e
File "/opt/conda/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 357, in run_mp_engine
engine = MQLLMEngine.from_engine_args(engine_args=engine_args,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 119, in from_engine_args
return cls(ipc_path=ipc_path,
^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 71, in __init__
self.engine = LLMEngine(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.12/site-packages/vllm/engine/llm_engine.py", line 273, in __init__
self.model_executor = executor_class(vllm_config=vllm_config, )
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.12/site-packages/vllm/executor/distributed_gpu_executor.py", line 26, in __init__
super().__init__(*args, **kwargs)
File "/opt/conda/lib/python3.12/site-packages/vllm/executor/executor_base.py", line 36, in __init__
self._init_executor()
File "/opt/conda/lib/python3.12/site-packages/vllm/executor/multiproc_gpu_executor.py", line 58, in _init_executor
worker = ProcessWorkerWrapper(
^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.12/site-packages/vllm/executor/multiproc_worker_utils.py", line 167, in __init__
self.process.start()
File "/opt/conda/lib/python3.12/multiprocessing/process.py", line 121, in start
self._popen = self._Popen(self)
^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.12/multiprocessing/context.py", line 289, in _Popen
return Popen(process_obj)
^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.12/multiprocessing/popen_spawn_posix.py", line 32, in __init__
super().__init__(process_obj)
File "/opt/conda/lib/python3.12/multiprocessing/popen_fork.py", line 19, in __init__
self._launch(process_obj)
File "/opt/conda/lib/python3.12/multiprocessing/popen_spawn_posix.py", line 47, in _launch
reduction.dump(process_obj, fp)
File "/opt/conda/lib/python3.12/multiprocessing/reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
_pickle.PicklingError: Can't pickle <class 'botocore.client.S3'>: attribute lookup S3 on botocore.client failed
Traceback (most recent call last):
File "/opt/conda/bin/vllm", line 8, in <module>
sys.exit(main())
^^^^^^
File "/opt/conda/lib/python3.12/site-packages/vllm/scripts.py", line 201, in main
args.dispatch_function(args)
File "/opt/conda/lib/python3.12/site-packages/vllm/scripts.py", line 42, in serve
uvloop.run(run_server(args))
File "/opt/conda/lib/python3.12/site-packages/uvloop/__init__.py", line 109, in run
return __asyncio.run(
^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.12/asyncio/runners.py", line 194, in run
return runner.run(main)
^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.12/asyncio/runners.py", line 118, in run
return self._loop.run_until_complete(task)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "uvloop/loop.pyx", line 1518, in uvloop.loop.Loop.run_until_complete
File "/opt/conda/lib/python3.12/site-packages/uvloop/__init__.py", line 61, in wrapper
return await main
^^^^^^^^^^
File "/opt/conda/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 740, in run_server
async with build_async_engine_client(args) as engine_client:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.12/contextlib.py", line 210, in __aenter__
return await anext(self.gen)
^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 118, in build_async_engine_client
async with build_async_engine_client_from_engine_args(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.12/contextlib.py", line 210, in __aenter__
return await anext(self.gen)
^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 223, in build_async_engine_client_from_engine_args
raise RuntimeError(
RuntimeError: Engine process failed to start. See stack trace for the root cause.
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working