-
-
Notifications
You must be signed in to change notification settings - Fork 10.6k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of `python collect_env.py`
Collecting environment information...
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35
Python version: 3.11.0rc1 (main, Aug 12 2022, 10:02:14) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA H100 80GB HBM3
GPU 1: NVIDIA H100 80GB HBM3
GPU 2: NVIDIA H100 80GB HBM3
GPU 3: NVIDIA H100 80GB HBM3
Nvidia driver version: 565.57.01
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 43 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 80
On-line CPU(s) list: 0-79
Vendor ID: GenuineIntel
Model name: Intel Xeon Processor (Icelake)
CPU family: 6
Model: 106
Thread(s) per core: 2
Core(s) per socket: 40
Socket(s): 1
Stepping: 0
BogoMIPS: 4200.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 wbnoinvd arat avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid fsrm md_clear arch_capabilities
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 2.5 MiB (80 instances)
L1i cache: 2.5 MiB (80 instances)
L2 cache: 160 MiB (40 instances)
L3 cache: 16 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-79
Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pynvml==11.5.3
[pip3] pytorch-triton==3.1.0+cf34004b8a
[pip3] pyzmq==26.2.0
[pip3] torch==2.4.0
[pip3] torchaudio==2.5.0.dev20241105+cu121
[pip3] torchvision==0.19.0
[pip3] transformers==4.46.2
[pip3] triton==3.0.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.3.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 0-79 0 N/A
GPU1 NV18 X NV18 NV18 0-79 0 N/A
GPU2 NV18 NV18 X NV18 0-79 0 N/A
GPU3 NV18 NV18 NV18 X 0-79 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
LD_LIBRARY_PATH=/mnt/share/ai_studio/.venv/lib/python3.11/site-packages/cv2/../../lib64:/usr/local/cuda-12.1/lib64:
CUDA_MODULE_LOADING=LAZY
Model Input Dumps
No response
🐛 Describe the bug
I am running a Vision LM model llava-hf/llava-1.5-13b-hf
via vllm serve
, and it outputs weird outputs: official script from vllm examples with somewhat "fixed" top_p
for better determinism outputs only '\n' tokens:
image_url = "https://wallpapers.com/images/featured/high-resolution-gfinds1akzwf6vcq.jpg"
chat_completion_from_url = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "hey"
},
{
"type": "image_url",
"image_url": {
"url": image_url
},
},
],
}],
model="llava-hf/llava-1.5-13b-hf",
max_tokens=32,
top_p=0.1
)
result = chat_completion_from_url.choices[0].message.content
print("Chat completion output from image url:", result)
# This outputs the '\n' token 32 times.
I launch the vllm server according to this official script:
vllm serve llava-hf/llava-1.5-13b-hf --chat-template template_llava.jinja
Crucially, running the vllm server via Jupyter-notebook yields completely normal outputs, which coincide with outputs, obtained via HuggingFace's transformers from the official Llava's example
:
from vllm import LLM, SamplingParams
from PIL import Image
import requests
image_url = "https://wallpapers.com/images/featured/high-resolution-gfinds1akzwf6vcq.jpg"
image = Image.open(requests.get(image_url, stream=True).raw)
llm = LLM(model="llava-hf/llava-1.5-13b-hf")
sampling_params = SamplingParams(top_p=0.1, max_tokens=32)
prompt = "USER: <image>\nhey\nASSISTANT:"
outputs = llm.generate(
{
"prompt": prompt,
"multi_modal_data": {"image": image},
},
sampling_params=sampling_params
)
print(outputs[0].outputs[0].text)
# This outputs "The image features a beautiful landscape with a large body of water, such as a lake or a river, surrounded by lush green trees and mountains. The water"
The inputs to the text encoder are completely normal, according to the logs:
Received request chat-7832348944684bcf9d8abb7197872fab: prompt: '<s>USER: <image>\nhey\nASSISTANT:\n', params: SamplingParams(n=1, presence_penalty=0.0, frequency_penalty=0.0, repetition_penalty=1.0, temperature=0.7, top_p=0.1, top_k=-1, min_p=0.0, seed=None, stop=[], stop_token_ids=[], include_stop_str_in_output=False, ignore_eos=False, max_tokens=16, min_tokens=0, logprobs=None, prompt_logprobs=None, skip_special_tokens=True, spaces_between_special_tokens=True, truncate_prompt_tokens=None), guided_decoding=GuidedDecodingParams(json=None, regex=None, choice=None, grammar=None, json_object=None, backend=None, whitespace_pattern=None), prompt_token_ids: [1, 3148, 1001, 29901, 29871, 32000, 29871, 13, 354, 29891, 13, 22933, 9047, 13566, 29901, 13], lora_request: None, prompt_adapter_request: None
Hence, I have a certain feeling there is a bug in how an image is processed when launching the vllm server via vllm serve
. Could you please investigate?
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working