Skip to content

In this repository I implemented the anomaly detection algorithm and apply it to detect failing servers on a network. In the second part, I used collaborative filtering to build a recommender system for movies.

umer7267/Anomaly-Detection-and-Recommender-Systems

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Anomaly-Detection-and-Recommender-Systems

In this repository I implemented the anomaly detection algorithm and apply it to detect failing servers on a network. In the second part, I used collaborative filtering to build a recommender system for movies.

ex8data1.mat - First example Dataset for anomaly detection
ex8data2.mat - Second example Dataset for anomaly detection
ex8_movies.mat - Movie Review Dataset
ex8_movieParams.mat - Parameters provided for debugging
multivariateGaussian.m - Computes the probability density function for a Gaussian distribution
visualizeFit.m - 2D plot of a Gaussian distribution and a dataset
checkCostFunction.m - Gradient checking for collaborative filtering
computeNumericalGradient.m - Numerically compute gradients
fmincg.m - Function minimization routine (similar to fminunc)
loadMovieList.m - Loads the list of movies into a cell-array
movie_ids.txt - List of movies
normalizeRatings.m - Mean normalization for collaborative filtering
estimateGaussian.m - Estimate the parameters of a Gaussian distribution with a diagonal covariance matrix
selectThreshold.m - Find a threshold for anomaly detection
cofiCostFunc.m - Implement the cost function for collaborative filtering

About

In this repository I implemented the anomaly detection algorithm and apply it to detect failing servers on a network. In the second part, I used collaborative filtering to build a recommender system for movies.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages