Skip to content

update master #62

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 28 commits into from
May 4, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
28 commits
Select commit Hold shift + click to select a range
0050ca3
initial commit
bigfooted Jan 4, 2025
7a683f1
small update
bigfooted Jan 6, 2025
aad5efe
regression
bigfooted Jan 15, 2025
2a28c0f
regression update
bigfooted Jan 17, 2025
f12a5cc
modify for regression test
bigfooted Jan 26, 2025
ea93d9c
modify for regression test
bigfooted Jan 26, 2025
9fec7aa
allow-run
bigfooted Jan 27, 2025
44a5ca1
change cores to 2
bigfooted Jan 28, 2025
c6f9d6c
change optimization
bigfooted Jan 28, 2025
a85322e
change optimization
bigfooted Jan 28, 2025
3090269
n=0
bigfooted Jan 28, 2025
902b5e1
change optim.csv.ref
bigfooted Jan 28, 2025
95112ee
move reference file
bigfooted Jan 31, 2025
b7bf654
add unsteady laminar cylinder
bigfooted Feb 1, 2025
2757349
Merge pull request #57 from su2code/design_pipe
pcarruscag Feb 1, 2025
85a3703
initial commit
bigfooted Feb 18, 2025
cf34683
remove duplicate files
bigfooted Feb 24, 2025
c66cf8b
Merge branch 'develop' into tut_unst_cylinder
bigfooted Feb 25, 2025
475f10a
change iterations
bigfooted Feb 26, 2025
4b60859
Merge branch 'tut_unst_cylinder' of https://github.com/su2code/Tutori…
bigfooted Feb 26, 2025
11c5bb9
update iterations
bigfooted Feb 26, 2025
1148e5b
change screen output
bigfooted Feb 26, 2025
1d4dc8d
Merge branch 'tut_unst_cylinder' of https://github.com/su2code/Tutori…
bigfooted Feb 26, 2025
ded0f94
sudo
pcarruscag Mar 1, 2025
60d11cd
Merge pull request #60 from su2code/corner_node
pcarruscag Mar 4, 2025
5791524
update paraview file
bigfooted Mar 7, 2025
95fe594
Merge pull request #58 from su2code/tut_unst_cylinder
bigfooted Mar 8, 2025
28b3a8a
Data-driven fluid modeling using physics-informed neural networks (#61)
EvertBunschoten Mar 26, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
###############################################################################################
# # _____ __ _____ ____ __ __ ____ # #
# # / ___// / / /__ \ / __ \____ _/ /_____ _/ |/ (_)___ ___ _____ # #
# # \__ \/ / / /__/ / / / / / __ `/ __/ __ `/ /|_/ / / __ \/ _ \/ ___/ # #
# # ___/ / /_/ // __/ / /_/ / /_/ / /_/ /_/ / / / / / / / / __/ / # #
# # /____/\____//____/ /_____/\__,_/\__/\__,_/_/ /_/_/_/ /_/\___/_/ # #
# # # #
###############################################################################################

############################# FILE NAME: 0:generate_config.py #################################
#=============================================================================================#
# author: Evert Bunschoten |
# :PhD Candidate , |
# :Flight Power and Propulsion |
# :TU Delft, |
# :The Netherlands |
# |
# |
# Description: |
# Generate configuration for defining a physics-informed neural network for modeling the |
# fluid properties of siloxane MM in NICFD with the data-driven fluid model in SU2. |
# |
# Version: 2.0.0 |
# |
#=============================================================================================#

from su2dataminer.config import Config_NICFD

# The fluid data for siloxane MM are generated with the CoolProp module using the Helmoltz
# equation of state.
fluid_name = "MM"
EoS_type = "HEOS"

Config = Config_NICFD()
Config.SetFluid(fluid_name)
Config.SetEquationOfState(EoS_type)

# Fluid data are generated on a density-energy grid rather than pressure-temperature.
Config.UsePTGrid(False)

# Display configuration settings and save config object.
Config.SetConfigName("SU2DataMiner_MM")
Config.PrintBanner()
Config.SaveConfig()
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
###############################################################################################
# # _____ __ _____ ____ __ __ ____ # #
# # / ___// / / /__ \ / __ \____ _/ /_____ _/ |/ (_)___ ___ _____ # #
# # \__ \/ / / /__/ / / / / / __ `/ __/ __ `/ /|_/ / / __ \/ _ \/ ___/ # #
# # ___/ / /_/ // __/ / /_/ / /_/ / /_/ /_/ / / / / / / / / __/ / # #
# # /____/\____//____/ /_____/\__,_/\__/\__,_/_/ /_/_/_/ /_/\___/_/ # #
# # # #
###############################################################################################

########################### FILE NAME: 1:generate_fluid_data.py ###############################
#=============================================================================================#
# author: Evert Bunschoten |
# :PhD Candidate , |
# :Flight Power and Propulsion |
# :TU Delft, |
# :The Netherlands |
# |
# |
# Description: |
# Generate the single-phase fluid data for siloxane MM which is used to train the |
# physics-informed neural network. |
# |
# Version: 2.0.0 |
# |
#=============================================================================================#

from su2dataminer.config import Config_NICFD
from su2dataminer.generate_data import DataGenerator_CoolProp

# Load SU2 DataMiner configuration.
Config = Config_NICFD("SU2DataMiner_MM.cfg")

# Initiate data generator.
DG = DataGenerator_CoolProp(Config)
DG.PreprocessData()
DG.ComputeData()

# Visualize and save fluid data.
DG.VisualizeFluidData()
DG.SaveData()
53 changes: 53 additions & 0 deletions compressible_flow/NICFD_nozzle/PhysicsInformed/2:train_PINN.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
###############################################################################################
# # _____ __ _____ ____ __ __ ____ # #
# # / ___// / / /__ \ / __ \____ _/ /_____ _/ |/ (_)___ ___ _____ # #
# # \__ \/ / / /__/ / / / / / __ `/ __/ __ `/ /|_/ / / __ \/ _ \/ ___/ # #
# # ___/ / /_/ // __/ / /_/ / /_/ / /_/ /_/ / / / / / / / / __/ / # #
# # /____/\____//____/ /_____/\__,_/\__/\__,_/_/ /_/_/_/ /_/\___/_/ # #
# # # #
###############################################################################################

################################ FILE NAME: 2:train_PINN.py ###################################
#=============================================================================================#
# author: Evert Bunschoten |
# :PhD Candidate , |
# :Flight Power and Propulsion |
# :TU Delft, |
# :The Netherlands |
# |
# |
# Description: |
# Initate physics-informed machine learning process for training the neural network used to |
# model the fluid properties of siloxane MM in NICFD with the SU2 data-driven fluid model. |
# |
# Version: 2.0.0 |
# |
#=============================================================================================#

from su2dataminer.config import Config_NICFD
from su2dataminer.manifold import TrainMLP_NICFD

# Load SU2 DataMiner configuration.
Config = Config_NICFD("SU2DataMiner_MM.cfg")

# Set learning rate parameters and define network architecture.
Eval = TrainMLP_NICFD(Config)

# Initial learning rate: 10^-3, learning rate decay parameter: 9.8787, mini-batch size: 2^6.
Eval.SetAlphaExpo(-3.0)
Eval.SetLRDecay(+9.8787e-01)
Eval.SetBatchExpo(6)

# Network architecture: two hidden layers with 12 nodes.
Eval.SetHiddenLayers([12,12])
# Hidden layer activation function: exp(x)
Eval.SetActivationFunction("exponential")
# Display training progress in the terminal.
Eval.SetVerbose(1)

# Initiate training process.
Eval.CommenceTraining()
Eval.TrainPostprocessing()

Config.UpdateMLPHyperParams(Eval)
Config.SaveConfig()
Loading