-
Notifications
You must be signed in to change notification settings - Fork 415
Open
Description
An overflow occurred when I ran the following code.
This is why the model estimation, including batch size, is not successful.
import torch
from torchvision import models
from torchsummary import summary
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
vgg = models.vgg16().to(device)
summary(vgg, (3, 600, 600), 20)
The output result is this.
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [20, 64, 600, 600] 1,792
ReLU-2 [20, 64, 600, 600] 0
Conv2d-3 [20, 64, 600, 600] 36,928
ReLU-4 [20, 64, 600, 600] 0
MaxPool2d-5 [20, 64, 300, 300] 0
torchsummary.py:93: RuntimeWarning: overflow encountered in long_scalars
total_output += np.prod(summary[layer]["output_shape"])
Conv2d-6 [20, 128, 300, 300] 73,856
ReLU-7 [20, 128, 300, 300] 0
Conv2d-8 [20, 128, 300, 300] 147,584
ReLU-9 [20, 128, 300, 300] 0
MaxPool2d-10 [20, 128, 150, 150] 0
Conv2d-11 [20, 256, 150, 150] 295,168
ReLU-12 [20, 256, 150, 150] 0
Conv2d-13 [20, 256, 150, 150] 590,080
ReLU-14 [20, 256, 150, 150] 0
Conv2d-15 [20, 256, 150, 150] 590,080
ReLU-16 [20, 256, 150, 150] 0
MaxPool2d-17 [20, 256, 75, 75] 0
Conv2d-18 [20, 512, 75, 75] 1,180,160
ReLU-19 [20, 512, 75, 75] 0
Conv2d-20 [20, 512, 75, 75] 2,359,808
ReLU-21 [20, 512, 75, 75] 0
Conv2d-22 [20, 512, 75, 75] 2,359,808
ReLU-23 [20, 512, 75, 75] 0
MaxPool2d-24 [20, 512, 37, 37] 0
Conv2d-25 [20, 512, 37, 37] 2,359,808
ReLU-26 [20, 512, 37, 37] 0
Conv2d-27 [20, 512, 37, 37] 2,359,808
ReLU-28 [20, 512, 37, 37] 0
Conv2d-29 [20, 512, 37, 37] 2,359,808
ReLU-30 [20, 512, 37, 37] 0
MaxPool2d-31 [20, 512, 18, 18] 0
AdaptiveAvgPool2d-32 [20, 512, 7, 7] 0
Linear-33 [20, 4096] 102,764,544
ReLU-34 [20, 4096] 0
Dropout-35 [20, 4096] 0
Linear-36 [20, 4096] 16,781,312
ReLU-37 [20, 4096] 0
Dropout-38 [20, 4096] 0
Linear-39 [20, 1000] 4,097,000
================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 82.40
Forward/backward pass size (MB): 1444.29
Params size (MB): 527.79
Estimated Total Size (MB): 2054.48
----------------------------------------------------------------
Development Environment
- Windows 10
- CUDA 10.2
- Python 3.8.6
- PyTorch 1.6.0+cu10.2
- torchsummary 1.5.1
Metadata
Metadata
Assignees
Labels
No labels