Skip to content

Bug in power series sqrt #3354

@robertwb

Description

@robertwb
sage: t = QQ[['t']].0
sage: sqrt(1+t)
1 + 1/2*t - 1/8*t^2 + 1/16*t^3 - 5/128*t^4 + 7/256*t^5 - 21/1024*t^6 + 33/2048*t^7 - 429/32768*t^8 + 715/65536*t^9 - 2431/262144*t^10 + 4199/524288*t^11 - 29393/4194304*t^12 + 52003/8388608*t^13 - 185725/33554432*t^14 + 334305/67108864*t^15 - 9694845/2147483648*t^16 + 17678835/4294967296*t^17 - 64822395/17179869184*t^18 + 119409675/34359738368*t^19 + O(t^20)
sage: sqrt(2+t)
------------------------------------------------------------
Traceback (most recent call last):

Now this error is expected because sqrt() has an extend keyword that allows to extend the base ring, and to give the name of the generator of the quadratic field, but this does not work:

sage: K.<t> = PowerSeriesRing(QQ, 5)
sage: (t+2).sqrt(extend=True, name='sqrt2')
sqrt2

The expected output would be sqrt2 + sqrt2*x/4 + sqrt2*x^2/32 +...

However, more convenient would be to make the default of extend to be True and for square roots of integers N the name sqrtN provided. Only raise an error for nonintegers if no name is given.

Component: commutative algebra

Keywords: power series

Issue created by migration from https://trac.sagemath.org/ticket/3354

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions