-
-
Notifications
You must be signed in to change notification settings - Fork 673
Open
Description
Implement
In [3]: gegenbauer(n,m,x)
Out[3]: gegenbauer(n, m, x)
In [4]: _.diff(m)
Out[4]:
n - 1
____
╲
╲ ⎛⎛ -k + n ⎞
╲ ⎜⎝2⋅(-1) + 2⎠⋅(k + m)⋅gegenbauer(k, m, x) ⎛ 2⋅k + 2
╱ ⎜────────────────────────────────────────────── + ⎜──────────────────────
╱ ⎝ (-k + n)⋅(k + 2⋅m + n) ⎝(k + 2⋅m)⋅(2⋅k + 2⋅m +
╱
‾‾‾‾
k = 0
⎞
2 ⎞ ⎟
─── + ───────────⎟⋅gegenbauer(n, m, x) ⎟
1) k + 2⋅m + n ⎠ ⎠
Previous description was (now implemented):
I noticed that the derivative of the gegenbauer polynomial wrt x was not implemented, so I wrote a patch for it.
I used the formula C'(n,a,x) = 2aC(n-1,a+1,x)
With the patch applied I get, for example:
sage: var('a');
sage: derivative(gegenbauer(2,a,x),x)
4*(a + 1)*a*x
Depends on #21645
CC: @rwst
Component: calculus
Keywords: gegenbauer, ultraspherical, derivative
Author: Carlos R. Mafra
Issue created by migration from https://trac.sagemath.org/ticket/21639