Skip to content

Doctest handling of Maxima's one-sided symbolic limits #17892

@rwst

Description

@rwst

Maxima gives back limit expressions in some integral computation but Sage has no idea what that is. Consequently, working with the expression leads to failure:

sage: var('a,b,t,s,k');
sage: u(t) = exp(-(t-a)^2/(2*s^2)) + exp(-(t-b)^2/(2*s^2)) ;
sage: I=integral(u(t)*exp(-I*k*t), t, -infinity, +infinity); I
-limit(1/2*sqrt(2)*sqrt(pi)*s*erf(1/2*(I*sqrt(2)*k*s^2 - sqrt(2)*a + sqrt(2)*t)/s)*e^(-1/2*k^2*s^2 - I*a*k) + 1/2*sqrt(2)*sqrt(pi)*s*erf(1/2*(I*sqrt(2)*k*s^2 - sqrt(2)*b + sqrt(2)*t)/s)*e^(-1/2*k^2*s^2 - I*b*k), t, -Infinity, plus) + limit(1/2*sqrt(2)*sqrt(pi)*s*erf(1/2*(I*sqrt(2)*k*s^2 - sqrt(2)*a + sqrt(2)*t)/s)*e^(-1/2*k^2*s^2 - I*a*k) + 1/2*sqrt(2)*sqrt(pi)*s*erf(1/2*(I*sqrt(2)*k*s^2 - sqrt(2)*b + sqrt(2)*t)/s)*e^(-1/2*k^2*s^2 - I*b*k), t, +Infinity, minus)
sage: I.simplify_full()
...
TypeError: ECL says: Error executing code in Maxima: 

Presumably a symbolic limit function would be necessary, and to connect it with what Maxima gives back.

Is there a smaller example?

This is from http://ask.sagemath.org/question/26004/sage-65-maxima-simplify_full-error/

Component: calculus

Issue created by migration from https://trac.sagemath.org/ticket/17892

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions