-
-
Notifications
You must be signed in to change notification settings - Fork 673
Description
I aim to write some classes to implement free groups, finitely presented groups and braid groups. Mostly it would consist in wrapping gap functions, so maybe it would need to be rewritten in the future if libgap is finished.
I don't have any previous experience in implementing new classes or using the category framework, but so far i have started with a little proof of concept. I would really apreciate any feedback or help.
This is an example of some things that you can do so far:
Basic arithmetic in Free and Finitely presented groups:
sage: G.<a,b,c,d,e> = FreeGroup()
sage: a*b*c*d/a/a/e
a*b*c*d*a^-2*e^-1
sage: H = G / [a*b*a*b,a^2,b^2,c^2,d^2,e^2,a*b*c*d*e*a*b,c*d*e*c*d*e,d*e*d*e]
sage: H.gens()
(a, b, c, d, e)
sage: H([1,2,3]) / H([3,2,1])
a*b*c*a^-1*b^-1*c^-1
Fox derivatives of free group elements, and Alexander matrices of finitely presented groups (the result is given on the group algebra):
sage: G<a,b,c> = FreeGroup()
sage: a*b*c/a/a/c
a*b*c*a^-2*c^-1
sage: H = G.quotient([a*b*a*b,a^2,b^2,c^2,a*b*c*a*b*c])
sage: H.gens()
(a, b, c)
sage: H([1,2,3])/H([3,2,1])
a*b*c*a^-1*b^-1*c^-1
sage: (a*b*a/b/a).fox_derivative(a)
B[1] + B[a*b] - B[a*b*a*b^-1*a^-1]
sage: H.alexander_matrix()
[ B[1] + B[x0] 0 0]
[ 0 B[1] + B[x1] 0]
[ 0 0 B[1] + B[x2] + B[x2^2]]
[ B[1] + B[x0*x1] B[x0] + B[x0*x1*x0] 0]
[ B[1] + B[x0*x2] 0 B[x0] + B[x0*x2*x0]]
[ 0 B[1] + B[x1*x2] + B[x1*x2*x1*x2] B[x1] + B[x1*x2*x1] + B[x1*x2*x1*x2*x1]]
Some properties of finitely presented groups.
sage: G = FreeGroup(3)
sage: G.inject_variables()
Defining x0, x1, x2
sage: H = G / [x0*x1*x2*x0*x1*x2,x1*x2*x0*x1*x2,x2^2]
sage: H.simplification_isomorphism()
Generic morphism:
From: Finitely presented group < x0, x1, x2 | x0*x1*x2*x0*x1*x2, x1*x2*x0*x1*x2, x2^2 >
To: Finitely presented group < x1, x2 | x2^2, x1*x2*x1*x2 >
sage: H.abelian_invariants()
(2, 2)
sage: H.simplification_isomorphism()(x0)
1
sage: H.simplification_isomorphism()(x1)
x1
sage: H.simplification_isomorphism()(x2)
x2
sage: H.abelian_invariants()
(2, 2)
Caution: some methods are no granted to finish, specially if the group is infinite. In that case, the system memory would be exhausted, and the underlying gap session killed, leaving orphaned objects. It would be nice to have a security system that would interrupt the computation before arriving to that, giving just an error message. It's on the to-do list.
sage: G = FreeGroup(3)
sage: G.inject_variables()
Defining x0, x1, x2
sage: H = G.quotient([x0^2,x1^2,x2^3,(x0*x1)^2,(x0*x2)^2,(x1*x2)^3])
sage: H.abelian_invariants()
(2,)
sage: H.simplification_isomorphism()
Generic morphism:
From: Finitely presented group < x0, x1, x2 | x0^2, x1^2, x2^3, x0*x1*x0*x1, x0*x2*x0*x2, x1*x2*x1*x2*x1*x2 >
To: Finitely presented group < x0, x1, x2 | x0^2, x1^2, x2^3, x0*x1*x0*x1, x0*x2*x0*x2, x1*x2*x1*x2*x1*x2 >
sage: H.cardinality()
24
sage: H.as_permutation_group()
Permutation Group with generators [(1,2)(3,6)(4,8)(5,7)(9,14)(10,13)(11,16)(12,15)(17,22)(18,21)(19,24)(20,23), (1,3)(2,6)(4,11)(5,12)(7,15)(8,16)(9,17)(10,18)(13,21)(14,22)(19,20)(23,24), (1,4,5)(2,7,8)(3,9,10)(6,13,14)(11,18,19)(12,20,17)(15,22,23)(16,24,21)]
For Braid groups, the way to work is similar.
sage: B=BraidGroup(4)
sage: B
Braid group on 4 strands
sage: B([1,2,3,-1,2,-1])
s0*s1*s2*s0^-1*s1*s0^-1
sage: b=B([1,2,3,-1,2,-1])
sage: b.left_normal_form()
[s0^-1*s1^-1*s2^-1*s0^-1*s1^-1*s0^-2*s1^-1*s2^-1*s0^-1*s1^-1*s0^-1, s0*s1*s2*s1*s0, s0*s2*s1*s0, s0*s1*s0*s2*s1]
sage: b.permutation()
[4, 3, 2, 1]
sage: b.burau_matrix()
[ -t + 1 -t^2 + t -t^3 + t^2 t^3]
[ -1 + t^-1 -t + 2 - t^-1 t 0]
[ -1 + 2*t^-1 - t^-2 -t + 3 - 2*t^-1 + t^-2 t - 1 0]
[ t^-1 1 - t^-1 0 0]
sage: b.LKB_matrix()
[ 0 0 -x^6*y + x^5*y - x^3*y + 2*x^2*y - x*y 0 -x^6*y + x^5*y - x^3*y + x^2*y -x^6*y + x^5*y - x^4*y]
[ 0 0 -x^5*y + x^4*y - x^2*y + x*y 0 -x^5*y + x^4*y - x^2*y -x^5*y + x^4*y]
[ 0 0 -x^4*y + x^3*y - x^2*y 0 -x^4*y + x^3*y 0]
[ -x^-3*y^-2 + x^-4*y^-2 -y^-1 + 2*x^-1*y^-1 - 2*x^-2*y^-1 + x^-2*y^-2 + x^-3*y^-1 - 2*x^-3*y^-2 + x^-4*y^-2 x^5*y - 2*x^4*y + x^3*y + x^2*y - x^2 - 2*x*y + 3*x + y - 3 + x^-1 + x^-1*y^-1 - 2*x^-2*y^-1 + x^-2*y^-2 + x^-3*y^-1 - 2*x^-3*y^-2 + x^-4*y^-2 -y^-1 + x^-1*y^-1 - x^-2*y^-1 x^5*y - 2*x^4*y + x^3*y + x^2*y - x^2 - x*y + 2*x - 1 + x^-1*y^-1 - x^-2*y^-1 x^5*y - 2*x^4*y + x^3*y - x^3 + x^2]
[ -x^-2*y^-1 + x^-3*y^-1 -x^2*y + x*y - x - y + 3 - 3*x^-1 + x^-1*y^-1 + x^-2 - 2*x^-2*y^-1 + x^-3*y^-1 x^4*y - 2*x^3*y + 2*x^2*y - x*y - x + 3 - 3*x^-1 + x^-1*y^-1 + x^-2 - 2*x^-2*y^-1 + x^-3*y^-1 -x^2*y + x*y - x + 2 - x^-1 x^4*y - 2*x^3*y + x^2*y - x + 2 - x^-1 0]
[ -x^-3*y^-1 -1 + 2*x^-1 - x^-2 + x^-2*y^-1 - x^-3*y^-1 x^3*y - 2*x^2*y + 2*x*y - y - 1 + 2*x^-1 - x^-2 + x^-2*y^-1 - x^-3*y^-1 -1 + x^-1 x^3*y - 2*x^2*y + x*y - 1 + x^-1 0]
Also b.plot() and b.plot3d() would plot the braid.
There is a new version to be used with the libgap interface (much faster than the old pexpect one). Since libgap seems to be stable and ready, i plan to focus on this version.
To install it, just make sure you have applied #6391, #13211, and then apply
- attachment: trac_12339_fpgroups_vb.patch,
- attachment: trac_12339_braids.patch
- attachment: trac_12339_braid_groups_4.patch
- attachment: trac_12339_braid_groups_review.patch
- attachment: trac_12339_pickling.patch
Depends on #6391
Depends on #13687
Depends on #13588
CC: @sagetrac-sage-combinat @sagetrac-sydahmad @videlec @jhpalmieri @sagetrac-tjolivet @rbeezer @dimpase
Component: group theory
Keywords: free groups, finitely presented groups, braids
Author: Miguel Marco, Volker Braun
Reviewer: Volker Braun
Merged: sage-5.7.beta3
Issue created by migration from https://trac.sagemath.org/ticket/12339