Skip to content

Conversation

compiler-errors
Copy link
Member

Instance::resolve is not set up to resolve items that are not body-like things. The logic in resolve_associated_item very much encodes this assumption:

fn resolve_associated_item<'tcx>(
tcx: TyCtxt<'tcx>,
trait_item_id: DefId,
typing_env: ty::TypingEnv<'tcx>,
trait_id: DefId,
rcvr_args: GenericArgsRef<'tcx>,
) -> Result<Option<Instance<'tcx>>, ErrorGuaranteed> {
debug!(?trait_item_id, ?typing_env, ?trait_id, ?rcvr_args, "resolve_associated_item");
let trait_ref = ty::TraitRef::from_method(tcx, trait_id, rcvr_args);
let input = typing_env.as_query_input(trait_ref);
let vtbl = match tcx.codegen_select_candidate(input) {
Ok(vtbl) => vtbl,
Err(
CodegenObligationError::Ambiguity
| CodegenObligationError::Unimplemented
| CodegenObligationError::FulfillmentError,
) => return Ok(None),
};
// Now that we know which impl is being used, we can dispatch to
// the actual function:
Ok(match vtbl {
traits::ImplSource::UserDefined(impl_data) => {
debug!(
"resolving ImplSource::UserDefined: {:?}, {:?}, {:?}, {:?}",
typing_env, trait_item_id, rcvr_args, impl_data
);
assert!(!rcvr_args.has_infer());
assert!(!trait_ref.has_infer());
let trait_def_id = tcx.trait_id_of_impl(impl_data.impl_def_id).unwrap();
let trait_def = tcx.trait_def(trait_def_id);
let leaf_def = trait_def
.ancestors(tcx, impl_data.impl_def_id)?
.leaf_def(tcx, trait_item_id)
.unwrap_or_else(|| {
bug!("{:?} not found in {:?}", trait_item_id, impl_data.impl_def_id);
});
// Since this is a trait item, we need to see if the item is either a trait
// default item or a specialization because we can't resolve those until we're
// in `TypingMode::PostAnalysis`.
//
// NOTE: This should be kept in sync with the similar code in
// `rustc_trait_selection::traits::project::assemble_candidates_from_impls()`.
let eligible = if leaf_def.is_final() {
// Non-specializable items are always projectable.
true
} else {
// Only reveal a specializable default if we're past type-checking
// and the obligation is monomorphic, otherwise passes such as
// transmute checking and polymorphic MIR optimizations could
// get a result which isn't correct for all monomorphizations.
match typing_env.typing_mode {
ty::TypingMode::Coherence
| ty::TypingMode::Analysis { .. }
| ty::TypingMode::PostBorrowckAnalysis { .. } => false,
ty::TypingMode::PostAnalysis => !trait_ref.still_further_specializable(),
}
};
if !eligible {
return Ok(None);
}
let typing_env = typing_env.with_post_analysis_normalized(tcx);
let (infcx, param_env) = tcx.infer_ctxt().build_with_typing_env(typing_env);
let args = rcvr_args.rebase_onto(tcx, trait_def_id, impl_data.args);
let args = translate_args(
&infcx,
param_env,
impl_data.impl_def_id,
args,
leaf_def.defining_node,
);
let args = infcx.tcx.erase_regions(args);
// HACK: We may have overlapping `dyn Trait` built-in impls and
// user-provided blanket impls. Detect that case here, and return
// ambiguity.
//
// This should not affect totally monomorphized contexts, only
// resolve calls that happen polymorphically, such as the mir-inliner
// and const-prop (and also some lints).
let self_ty = rcvr_args.type_at(0);
if !self_ty.is_known_rigid() {
let predicates = tcx
.predicates_of(impl_data.impl_def_id)
.instantiate(tcx, impl_data.args)
.predicates;
let sized_def_id = tcx.lang_items().sized_trait();
// If we find a `Self: Sized` bound on the item, then we know
// that `dyn Trait` can certainly never apply here.
if !predicates.into_iter().filter_map(ty::Clause::as_trait_clause).any(|clause| {
Some(clause.def_id()) == sized_def_id
&& clause.skip_binder().self_ty() == self_ty
}) {
return Ok(None);
}
}
// Any final impl is required to define all associated items.
if !leaf_def.item.defaultness(tcx).has_value() {
let guar = tcx.dcx().span_delayed_bug(
tcx.def_span(leaf_def.item.def_id),
"missing value for assoc item in impl",
);
return Err(guar);
}
// Make sure that we're projecting to an item that has compatible args.
// This may happen if we are resolving an instance before codegen, such
// as during inlining. This check is also done in projection.
if !tcx.check_args_compatible(leaf_def.item.def_id, args) {
let guar = tcx.dcx().span_delayed_bug(
tcx.def_span(leaf_def.item.def_id),
"missing value for assoc item in impl",
);
return Err(guar);
}
let args = tcx.erase_regions(args);
// We check that the impl item is compatible with the trait item
// because otherwise we may ICE in const eval due to type mismatches,
// signature incompatibilities, etc.
// NOTE: We could also only enforce this in `PostAnalysis`, which
// is what CTFE and MIR inlining would care about anyways.
if trait_item_id != leaf_def.item.def_id
&& let Some(leaf_def_item) = leaf_def.item.def_id.as_local()
{
tcx.ensure().compare_impl_item(leaf_def_item)?;
}
Some(ty::Instance::new(leaf_def.item.def_id, args))
}
traits::ImplSource::Builtin(BuiltinImplSource::Object(_), _) => {
let trait_ref = ty::TraitRef::from_method(tcx, trait_id, rcvr_args);
if trait_ref.has_non_region_infer() || trait_ref.has_non_region_param() {
// We only resolve totally substituted vtable entries.
None
} else {
let vtable_base = tcx.first_method_vtable_slot(trait_ref);
let offset = tcx
.own_existential_vtable_entries(trait_id)
.iter()
.copied()
.position(|def_id| def_id == trait_item_id);
offset.map(|offset| Instance {
def: ty::InstanceKind::Virtual(trait_item_id, vtable_base + offset),
args: rcvr_args,
})
}
}
traits::ImplSource::Builtin(BuiltinImplSource::Misc, _) => {
if tcx.is_lang_item(trait_ref.def_id, LangItem::Clone) {
// FIXME(eddyb) use lang items for methods instead of names.
let name = tcx.item_name(trait_item_id);
if name == sym::clone {
let self_ty = trait_ref.self_ty();
match self_ty.kind() {
ty::FnDef(..) | ty::FnPtr(..) => (),
ty::Coroutine(..)
| ty::CoroutineWitness(..)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Tuple(..) => {}
_ => return Ok(None),
};
Some(Instance {
def: ty::InstanceKind::CloneShim(trait_item_id, self_ty),
args: rcvr_args,
})
} else {
assert_eq!(name, sym::clone_from);
// Use the default `fn clone_from` from `trait Clone`.
let args = tcx.erase_regions(rcvr_args);
Some(ty::Instance::new(trait_item_id, args))
}
} else if tcx.is_lang_item(trait_ref.def_id, LangItem::FnPtrTrait) {
if tcx.is_lang_item(trait_item_id, LangItem::FnPtrAddr) {
let self_ty = trait_ref.self_ty();
if !matches!(self_ty.kind(), ty::FnPtr(..)) {
return Ok(None);
}
Some(Instance {
def: ty::InstanceKind::FnPtrAddrShim(trait_item_id, self_ty),
args: rcvr_args,
})
} else {
tcx.dcx().emit_fatal(UnexpectedFnPtrAssociatedItem {
span: tcx.def_span(trait_item_id),
})
}
} else if let Some(target_kind) = tcx.fn_trait_kind_from_def_id(trait_ref.def_id) {
// FIXME: This doesn't check for malformed libcore that defines, e.g.,
// `trait Fn { fn call_once(&self) { .. } }`. This is mostly for extension
// methods.
if cfg!(debug_assertions)
&& ![sym::call, sym::call_mut, sym::call_once]
.contains(&tcx.item_name(trait_item_id))
{
// For compiler developers who'd like to add new items to `Fn`/`FnMut`/`FnOnce`,
// you either need to generate a shim body, or perhaps return
// `InstanceKind::Item` pointing to a trait default method body if
// it is given a default implementation by the trait.
bug!(
"no definition for `{trait_ref}::{}` for built-in callable type",
tcx.item_name(trait_item_id)
)
}
match *rcvr_args.type_at(0).kind() {
ty::Closure(closure_def_id, args) => {
Some(Instance::resolve_closure(tcx, closure_def_id, args, target_kind))
}
ty::FnDef(..) | ty::FnPtr(..) => Some(Instance {
def: ty::InstanceKind::FnPtrShim(trait_item_id, rcvr_args.type_at(0)),
args: rcvr_args,
}),
ty::CoroutineClosure(coroutine_closure_def_id, args) => {
// When a coroutine-closure implements the `Fn` traits, then it
// always dispatches to the `FnOnce` implementation. This is to
// ensure that the `closure_kind` of the resulting closure is in
// sync with the built-in trait implementations (since all of the
// implementations return `FnOnce::Output`).
if ty::ClosureKind::FnOnce == args.as_coroutine_closure().kind() {
Some(Instance::new(coroutine_closure_def_id, args))
} else {
Some(Instance {
def: ty::InstanceKind::ConstructCoroutineInClosureShim {
coroutine_closure_def_id,
receiver_by_ref: target_kind != ty::ClosureKind::FnOnce,
},
args,
})
}
}
_ => bug!(
"no built-in definition for `{trait_ref}::{}` for non-fn type",
tcx.item_name(trait_item_id)
),
}
} else if let Some(target_kind) = tcx.async_fn_trait_kind_from_def_id(trait_ref.def_id)
{
match *rcvr_args.type_at(0).kind() {
ty::CoroutineClosure(coroutine_closure_def_id, args) => {
if target_kind == ClosureKind::FnOnce
&& args.as_coroutine_closure().kind() != ClosureKind::FnOnce
{
// If we're computing `AsyncFnOnce` for a by-ref closure then
// construct a new body that has the right return types.
Some(Instance {
def: ty::InstanceKind::ConstructCoroutineInClosureShim {
coroutine_closure_def_id,
receiver_by_ref: false,
},
args,
})
} else {
Some(Instance::new(coroutine_closure_def_id, args))
}
}
ty::Closure(closure_def_id, args) => {
Some(Instance::resolve_closure(tcx, closure_def_id, args, target_kind))
}
ty::FnDef(..) | ty::FnPtr(..) => Some(Instance {
def: ty::InstanceKind::FnPtrShim(trait_item_id, rcvr_args.type_at(0)),
args: rcvr_args,
}),
_ => bug!(
"no built-in definition for `{trait_ref}::{}` for non-lending-closure type",
tcx.item_name(trait_item_id)
),
}
} else if tcx.is_lang_item(trait_ref.def_id, LangItem::TransmuteTrait) {
let name = tcx.item_name(trait_item_id);
assert_eq!(name, sym::transmute);
let args = tcx.erase_regions(rcvr_args);
Some(ty::Instance::new(trait_item_id, args))
} else {
Instance::try_resolve_item_for_coroutine(tcx, trait_item_id, trait_id, rcvr_args)
}
}
traits::ImplSource::Param(..)
| traits::ImplSource::Builtin(BuiltinImplSource::TraitUpcasting { .. }, _)
| traits::ImplSource::Builtin(BuiltinImplSource::TupleUnsizing, _) => None,
})
}

However, some diagnostics were using Instance::resolve on an associated type, and it was simply a lucky coicidence that nothing went wrong.

This PR adds an assertion to make sure we won't do this again in the future, and fixes two callsites:

  1. call_kind which returns a CallKind enum to categorize what a call in MIR comes from, and was using Instance::resolve to point at the associated type Deref::Target for a specific self ty.
  2. MirBorrowckCtxt::explain_deref_coercion, which was doing the same thing.

The logic was replaced with specialization_graph::assoc_def, which is the proper way of fetching the right AssocItem for a given impl.

r? @lcnr or re-roll :)

@rustbot rustbot added S-waiting-on-review Status: Awaiting review from the assignee but also interested parties. T-compiler Relevant to the compiler team, which will review and decide on the PR/issue. labels Jan 13, 2025
@rustbot
Copy link
Collaborator

rustbot commented Jan 13, 2025

Some changes occurred to the CTFE machinery

cc @rust-lang/wg-const-eval

@lcnr
Copy link
Contributor

lcnr commented Jan 13, 2025

@bors r+ rollup

@bors
Copy link
Collaborator

bors commented Jan 13, 2025

📌 Commit 9bf9f5d has been approved by lcnr

It is now in the queue for this repository.

@bors bors added S-waiting-on-bors Status: Waiting on bors to run and complete tests. Bors will change the label on completion. and removed S-waiting-on-review Status: Awaiting review from the assignee but also interested parties. labels Jan 13, 2025
bors added a commit to rust-lang-ci/rust that referenced this pull request Jan 13, 2025
…iaskrgr

Rollup of 4 pull requests

Successful merges:

 - rust-lang#133752 (replace copypasted ModuleLlvm::parse)
 - rust-lang#135245 (rustc_feature: Avoid unsafe `std::env::set_var()` in `UnstableFeatures` tests)
 - rust-lang#135405 (path: Move is_absolute check to sys::path)
 - rust-lang#135426 (Assert that `Instance::try_resolve` is only used on body-like things)

r? `@ghost`
`@rustbot` modify labels: rollup
bors added a commit to rust-lang-ci/rust that referenced this pull request Jan 13, 2025
Rollup of 4 pull requests

Successful merges:

 - rust-lang#133752 (replace copypasted ModuleLlvm::parse)
 - rust-lang#135245 (rustc_feature: Avoid unsafe `std::env::set_var()` in `UnstableFeatures` tests)
 - rust-lang#135405 (path: Move is_absolute check to sys::path)
 - rust-lang#135426 (Assert that `Instance::try_resolve` is only used on body-like things)

r? `@ghost`
`@rustbot` modify labels: rollup

try-job: x86_64-mingw-1
bors added a commit to rust-lang-ci/rust that referenced this pull request Jan 14, 2025
…iaskrgr

Rollup of 4 pull requests

Successful merges:

 - rust-lang#133752 (replace copypasted ModuleLlvm::parse)
 - rust-lang#135245 (rustc_feature: Avoid unsafe `std::env::set_var()` in `UnstableFeatures` tests)
 - rust-lang#135405 (path: Move is_absolute check to sys::path)
 - rust-lang#135426 (Assert that `Instance::try_resolve` is only used on body-like things)

r? `@ghost`
`@rustbot` modify labels: rollup

try-job: x86_64-mingw-1
@bors bors merged commit 40f5861 into rust-lang:master Jan 14, 2025
6 checks passed
rust-timer added a commit to rust-lang-ci/rust that referenced this pull request Jan 14, 2025
Rollup merge of rust-lang#135426 - compiler-errors:no-resolve-assoc-ty, r=lcnr

Assert that `Instance::try_resolve` is only used on body-like things

`Instance::resolve` is not set up to resolve items that are not body-like things. The logic in `resolve_associated_item` very much encodes this assumption:

https://github.com/rust-lang/rust/blob/e7ad3ae331bf2716389c10e01612e201a7f98c8d/compiler/rustc_ty_utils/src/instance.rs#L96-L386

However, some diagnostics were using `Instance::resolve` on an associated type, and it was simply a lucky coicidence that nothing went wrong.

This PR adds an assertion to make sure we won't do this again in the future, and fixes two callsites:
1. `call_kind` which returns a `CallKind` enum to categorize what a call in MIR comes from, and was using `Instance::resolve` to point at the associated type `Deref::Target` for a specific self ty.
2. `MirBorrowckCtxt::explain_deref_coercion`, which was doing the same thing.

The logic was replaced with `specialization_graph::assoc_def`, which is the proper way of fetching the right `AssocItem` for a given impl.

r? `@lcnr` or re-roll :)
@rustbot rustbot added this to the 1.86.0 milestone Jan 14, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
S-waiting-on-bors Status: Waiting on bors to run and complete tests. Bors will change the label on completion. T-compiler Relevant to the compiler team, which will review and decide on the PR/issue.
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants