Skip to content

Remove color_space metadata and ConvertColorSpace() transform #7120

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 17 commits into from
Jan 24, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
55 changes: 26 additions & 29 deletions test/prototype_common_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -238,7 +238,6 @@ def load(self, device):

@dataclasses.dataclass
class ImageLoader(TensorLoader):
color_space: datapoints.ColorSpace
spatial_size: Tuple[int, int] = dataclasses.field(init=False)
num_channels: int = dataclasses.field(init=False)

Expand All @@ -248,10 +247,10 @@ def __post_init__(self):


NUM_CHANNELS_MAP = {
datapoints.ColorSpace.GRAY: 1,
datapoints.ColorSpace.GRAY_ALPHA: 2,
datapoints.ColorSpace.RGB: 3,
datapoints.ColorSpace.RGB_ALPHA: 4,
"GRAY": 1,
"GRAY_ALPHA": 2,
"RGB": 3,
"RGBA": 4,
}


Expand All @@ -265,7 +264,7 @@ def get_num_channels(color_space):
def make_image_loader(
size="random",
*,
color_space=datapoints.ColorSpace.RGB,
color_space="RGB",
extra_dims=(),
dtype=torch.float32,
constant_alpha=True,
Expand All @@ -276,11 +275,11 @@ def make_image_loader(
def fn(shape, dtype, device):
max_value = get_max_value(dtype)
data = torch.testing.make_tensor(shape, low=0, high=max_value, dtype=dtype, device=device)
if color_space in {datapoints.ColorSpace.GRAY_ALPHA, datapoints.ColorSpace.RGB_ALPHA} and constant_alpha:
if color_space in {"GRAY_ALPHA", "RGBA"} and constant_alpha:
data[..., -1, :, :] = max_value
return datapoints.Image(data, color_space=color_space)
return datapoints.Image(data)

return ImageLoader(fn, shape=(*extra_dims, num_channels, *size), dtype=dtype, color_space=color_space)
return ImageLoader(fn, shape=(*extra_dims, num_channels, *size), dtype=dtype)


make_image = from_loader(make_image_loader)
Expand All @@ -290,10 +289,10 @@ def make_image_loaders(
*,
sizes=DEFAULT_SPATIAL_SIZES,
color_spaces=(
datapoints.ColorSpace.GRAY,
datapoints.ColorSpace.GRAY_ALPHA,
datapoints.ColorSpace.RGB,
datapoints.ColorSpace.RGB_ALPHA,
"GRAY",
"GRAY_ALPHA",
"RGB",
"RGBA",
),
extra_dims=DEFAULT_EXTRA_DIMS,
dtypes=(torch.float32, torch.uint8),
Expand All @@ -306,7 +305,7 @@ def make_image_loaders(
make_images = from_loaders(make_image_loaders)


def make_image_loader_for_interpolation(size="random", *, color_space=datapoints.ColorSpace.RGB, dtype=torch.uint8):
def make_image_loader_for_interpolation(size="random", *, color_space="RGB", dtype=torch.uint8):
size = _parse_spatial_size(size)
num_channels = get_num_channels(color_space)

Expand All @@ -318,24 +317,24 @@ def fn(shape, dtype, device):
.resize((width, height))
.convert(
{
datapoints.ColorSpace.GRAY: "L",
datapoints.ColorSpace.GRAY_ALPHA: "LA",
datapoints.ColorSpace.RGB: "RGB",
datapoints.ColorSpace.RGB_ALPHA: "RGBA",
"GRAY": "L",
"GRAY_ALPHA": "LA",
"RGB": "RGB",
"RGBA": "RGBA",
}[color_space]
)
)

image_tensor = convert_dtype_image_tensor(to_image_tensor(image_pil).to(device=device), dtype=dtype)

return datapoints.Image(image_tensor, color_space=color_space)
return datapoints.Image(image_tensor)

return ImageLoader(fn, shape=(num_channels, *size), dtype=dtype, color_space=color_space)
return ImageLoader(fn, shape=(num_channels, *size), dtype=dtype)


def make_image_loaders_for_interpolation(
sizes=((233, 147),),
color_spaces=(datapoints.ColorSpace.RGB,),
color_spaces=("RGB",),
dtypes=(torch.uint8,),
):
for params in combinations_grid(size=sizes, color_space=color_spaces, dtype=dtypes):
Expand Down Expand Up @@ -583,7 +582,7 @@ class VideoLoader(ImageLoader):
def make_video_loader(
size="random",
*,
color_space=datapoints.ColorSpace.RGB,
color_space="RGB",
num_frames="random",
extra_dims=(),
dtype=torch.uint8,
Expand All @@ -592,12 +591,10 @@ def make_video_loader(
num_frames = int(torch.randint(1, 5, ())) if num_frames == "random" else num_frames

def fn(shape, dtype, device):
video = make_image(size=shape[-2:], color_space=color_space, extra_dims=shape[:-3], dtype=dtype, device=device)
return datapoints.Video(video, color_space=color_space)
video = make_image(size=shape[-2:], extra_dims=shape[:-3], dtype=dtype, device=device)
return datapoints.Video(video)

return VideoLoader(
fn, shape=(*extra_dims, num_frames, get_num_channels(color_space), *size), dtype=dtype, color_space=color_space
)
return VideoLoader(fn, shape=(*extra_dims, num_frames, get_num_channels(color_space), *size), dtype=dtype)


make_video = from_loader(make_video_loader)
Expand All @@ -607,8 +604,8 @@ def make_video_loaders(
*,
sizes=DEFAULT_SPATIAL_SIZES,
color_spaces=(
datapoints.ColorSpace.GRAY,
datapoints.ColorSpace.RGB,
"GRAY",
"RGB",
),
num_frames=(1, 0, "random"),
extra_dims=DEFAULT_EXTRA_DIMS,
Expand Down
Loading