-
Notifications
You must be signed in to change notification settings - Fork 7.1k
Hack to improve performance of resize op with nearest mode on 2D #6661
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
# This is a perf hack to avoid <pytorch-issue> | ||
# We are transforming (1, 1, H, W) into (1, 2, H, W) to force to take channels_first path | ||
do_perf_hack = False |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Good find! We should eventually fix on PyTorch Core but it will do for now.
Shall we move the method directly in prototype? This will allow us to simplify some of the code and it will permit the easier comparisons of the performance improvements made on Transforms V2. We are also extremely close to cutting the branch of the release, so we should avoid merging hacks on main. WDYT?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Sounds good to put things on prototype.
However, JIT is not passing, I'll be searching for a workaround.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The very last resort for JIT is to make it available only when not scripting.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Unless we're in a rush, wouldn't it be better to wait for a proper solution in core? Something similar to pytorch/pytorch#83840 (comment)
I agree that with the approaching release we may not want to risk too much
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We need it sooner than later but to avoid issues we will move it to prototype. It is likely there will be many workarounds like this to close the gaps between V1 and V2 in terms of speed and make them usable for the TorchMultimodal team. Most of them will be removed long before the API moved out of prototype.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
FWIW, moving the optimization into the prototype area won't really give us a fair comparison between V1 and V2, since the optimization can be applied to both versions.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
while moving the hack to prototype we have a slow down due to the fact that we cast non-float data to float (and copy), this makes input contiguous and we have to process twice more data as we expanded (N, 1->2, H, W).
@@ -466,8 +466,18 @@ def resize( | |||
# Define align_corners to avoid warnings | |||
align_corners = False if interpolation in ["bilinear", "bicubic"] else None | |||
|
|||
# This is a perf hack to avoid <pytorch-issue> | |||
# We are transforming (1, 1, H, W) into (1, 2, H, W) to force to take channels_first path |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
What if the input is (N, 1, H, W)
, do you still need to do this hack? Will your code work in this scenario? What's the performance gain for batch of say 32?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes, you are right, I need to use N and not 1
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It gives ~4x speedup if using batch=32:
Timestamp: 20220928-181325
Torch version: 1.13.0.dev20220906+cu113
Torchvision version: 0.14.0a0
Num threads: 1
[--------------------------------- Mask Resize measurements --------------------------------]
| Original (slow) mask 2d | Hacked (faster) mask 2d
1 threads: ----------------------------------------------------------------------------------
([32, 1, 500, 500]), 500 -> 128 | 5.5 | 1.6
Times are in milliseconds (ms).
83d49ef
to
b320db0
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM, thanks!
…asks" This PR improves the speed of `interpolate()`: - on images and masks (`num_channels < 4`, `channels_last=True`) - for the following modes: linear (antialias=False), nearest (int and float), and nearest-exact (int and float) - for both upsampling and downsampling The actual speed-up ranges from 1.1X to 110X, but this depends on various factors like number of threads and of course input_size/output_size. In a typical torchvision training job (where num_threads=1 because of DataLoader multi-processing), the following speed-ups should be expected (I ran much more benchmarks than this one, see below for more details): ``` (1, 3, 600, 400) -> (224, 224) linear float32 num_threads=1 1.0X 1.0ms vs 1.0ms (1, 3, 600, 400) -> (224, 224) nearest float32 num_threads=1 1.9X 0.9ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest uint8 num_threads=1 1.7X 0.9ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest-exact float32 num_threads=1 2.1X 1.0ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=1 1.8X 0.9ms vs 0.5ms (1, 1, 600, 400) -> (224, 224) linear float32 num_threads=1 7X 0.8ms vs 0.1ms (1, 1, 600, 400) -> (224, 224) nearest float32 num_threads=1 14X 0.852ms vs 0.061ms (1, 1, 600, 400) -> (224, 224) nearest uint8 num_threads=1 9X 0.828ms vs 0.087ms (1, 1, 600, 400) -> (224, 224) nearest-exact float32 num_threads=1 15X 0.922ms vs 0.061ms (1, 1, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=1 10X 0.897ms vs 0.087ms ``` An immediate follow-up to this PR would be to do the same changes for the 3D kernels. Thanks a ton fmassa for the help! ### Speedup benchmarks: Results: <details> ``` ---------------------------------------------------------------------------------------------------- (1, 3, 64, 64) -> (224, 224) linear float32 num_threads=1 0.9X 0.9ms vs 1.1ms (1, 3, 64, 64) -> (224, 224) nearest float32 num_threads=1 1.6X 0.9ms vs 0.5ms (1, 3, 64, 64) -> (224, 224) nearest uint8 num_threads=1 1.7X 0.9ms vs 0.5ms (1, 3, 64, 64) -> (224, 224) nearest-exact float32 num_threads=1 1.7X 1.0ms vs 0.5ms (1, 3, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=1 1.9X 0.9ms vs 0.5ms (1, 1, 64, 64) -> (224, 224) linear float32 num_threads=1 8X 0.806ms vs 0.097ms (1, 1, 64, 64) -> (224, 224) nearest float32 num_threads=1 15X 0.848ms vs 0.056ms (1, 1, 64, 64) -> (224, 224) nearest uint8 num_threads=1 10X 0.828ms vs 0.084ms (1, 1, 64, 64) -> (224, 224) nearest-exact float32 num_threads=1 16X 0.914ms vs 0.057ms (1, 1, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=1 10X 0.900ms vs 0.086ms (1, 3, 64, 64) -> (224, 224) linear float32 num_threads=2 1.6X 1.1ms vs 0.7ms (1, 3, 64, 64) -> (224, 224) nearest float32 num_threads=2 1.6X 0.6ms vs 0.4ms (1, 3, 64, 64) -> (224, 224) nearest uint8 num_threads=2 1.7X 0.4ms vs 0.3ms (1, 3, 64, 64) -> (224, 224) nearest-exact float32 num_threads=2 1.7X 0.6ms vs 0.4ms (1, 3, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=2 1.7X 0.5ms vs 0.3ms (1, 1, 64, 64) -> (224, 224) linear float32 num_threads=2 9X 0.800ms vs 0.088ms (1, 1, 64, 64) -> (224, 224) nearest float32 num_threads=2 11X 0.459ms vs 0.043ms (1, 1, 64, 64) -> (224, 224) nearest uint8 num_threads=2 7X 0.424ms vs 0.064ms (1, 1, 64, 64) -> (224, 224) nearest-exact float32 num_threads=2 12X 0.503ms vs 0.043ms (1, 1, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=2 8X 0.461ms vs 0.059ms (1, 3, 64, 64) -> (224, 224) linear float32 num_threads=12 3X 1.1ms vs 0.3ms (1, 3, 64, 64) -> (224, 224) nearest float32 num_threads=12 1.6X 0.3ms vs 0.2ms (1, 3, 64, 64) -> (224, 224) nearest uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 64, 64) -> (224, 224) nearest-exact float32 num_threads=12 1.5X 0.3ms vs 0.2ms (1, 3, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 1, 64, 64) -> (224, 224) linear float32 num_threads=12 5X 0.8ms vs 0.2ms (1, 1, 64, 64) -> (224, 224) nearest float32 num_threads=12 10X 0.445ms vs 0.047ms (1, 1, 64, 64) -> (224, 224) nearest uint8 num_threads=12 7X 0.432ms vs 0.062ms (1, 1, 64, 64) -> (224, 224) nearest-exact float32 num_threads=12 10X 0.478ms vs 0.046ms (1, 1, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=12 7X 0.470ms vs 0.063ms (1, 3, 64, 64) -> (224, 224) linear float32 num_threads=32 3X 1.1ms vs 0.4ms (1, 3, 64, 64) -> (224, 224) nearest float32 num_threads=32 1.8X 0.3ms vs 0.2ms (1, 3, 64, 64) -> (224, 224) nearest uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 64, 64) -> (224, 224) nearest-exact float32 num_threads=32 1.4X 0.3ms vs 0.2ms (1, 3, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 1, 64, 64) -> (224, 224) linear float32 num_threads=32 11X 0.815ms vs 0.074ms (1, 1, 64, 64) -> (224, 224) nearest float32 num_threads=32 10X 0.443ms vs 0.045ms (1, 1, 64, 64) -> (224, 224) nearest uint8 num_threads=32 7X 0.436ms vs 0.061ms (1, 1, 64, 64) -> (224, 224) nearest-exact float32 num_threads=32 10X 0.478ms vs 0.046ms (1, 1, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=32 8X 0.470ms vs 0.061ms ---------------------------------------------------------------------------------------------------- (1, 3, 128, 128) -> (224, 224) linear float32 num_threads=1 0.9X 0.9ms vs 1.1ms (1, 3, 128, 128) -> (224, 224) nearest float32 num_threads=1 1.5X 0.9ms vs 0.6ms (1, 3, 128, 128) -> (224, 224) nearest uint8 num_threads=1 1.7X 0.9ms vs 0.5ms (1, 3, 128, 128) -> (224, 224) nearest-exact float32 num_threads=1 1.6X 1.0ms vs 0.6ms (1, 3, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=1 1.8X 0.9ms vs 0.5ms (1, 1, 128, 128) -> (224, 224) linear float32 num_threads=1 8X 0.808ms vs 0.099ms (1, 1, 128, 128) -> (224, 224) nearest float32 num_threads=1 15X 0.848ms vs 0.058ms (1, 1, 128, 128) -> (224, 224) nearest uint8 num_threads=1 9X 0.820ms vs 0.087ms (1, 1, 128, 128) -> (224, 224) nearest-exact float32 num_threads=1 16X 0.909ms vs 0.059ms (1, 1, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=1 10X 0.898ms vs 0.088ms (1, 3, 128, 128) -> (224, 224) linear float32 num_threads=2 1.4X 0.9ms vs 0.7ms (1, 3, 128, 128) -> (224, 224) nearest float32 num_threads=2 1.5X 0.5ms vs 0.3ms (1, 3, 128, 128) -> (224, 224) nearest uint8 num_threads=2 1.7X 0.4ms vs 0.3ms (1, 3, 128, 128) -> (224, 224) nearest-exact float32 num_threads=2 1.5X 0.5ms vs 0.4ms (1, 3, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=2 1.8X 0.5ms vs 0.3ms (1, 1, 128, 128) -> (224, 224) linear float32 num_threads=2 9X 0.799ms vs 0.090ms (1, 1, 128, 128) -> (224, 224) nearest float32 num_threads=2 10X 0.459ms vs 0.045ms (1, 1, 128, 128) -> (224, 224) nearest uint8 num_threads=2 7X 0.427ms vs 0.059ms (1, 1, 128, 128) -> (224, 224) nearest-exact float32 num_threads=2 11X 0.501ms vs 0.044ms (1, 1, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=2 8X 0.460ms vs 0.060ms (1, 3, 128, 128) -> (224, 224) linear float32 num_threads=12 2.9X 1.0ms vs 0.3ms (1, 3, 128, 128) -> (224, 224) nearest float32 num_threads=12 1.2X 0.2ms vs 0.2ms (1, 3, 128, 128) -> (224, 224) nearest uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 128, 128) -> (224, 224) nearest-exact float32 num_threads=12 1.1X 0.2ms vs 0.2ms (1, 3, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=12 1.6X 0.2ms vs 0.1ms (1, 1, 128, 128) -> (224, 224) linear float32 num_threads=12 12X 0.809ms vs 0.068ms (1, 1, 128, 128) -> (224, 224) nearest float32 num_threads=12 11X 0.438ms vs 0.041ms (1, 1, 128, 128) -> (224, 224) nearest uint8 num_threads=12 8X 0.432ms vs 0.055ms (1, 1, 128, 128) -> (224, 224) nearest-exact float32 num_threads=12 12X 0.480ms vs 0.041ms (1, 1, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=12 8X 0.464ms vs 0.056ms (1, 3, 128, 128) -> (224, 224) linear float32 num_threads=32 3X 1.1ms vs 0.3ms (1, 3, 128, 128) -> (224, 224) nearest float32 num_threads=32 1.3X 0.3ms vs 0.2ms (1, 3, 128, 128) -> (224, 224) nearest uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 128, 128) -> (224, 224) nearest-exact float32 num_threads=32 1.4X 0.3ms vs 0.2ms (1, 3, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 1, 128, 128) -> (224, 224) linear float32 num_threads=32 11X 0.813ms vs 0.075ms (1, 1, 128, 128) -> (224, 224) nearest float32 num_threads=32 10X 0.443ms vs 0.046ms (1, 1, 128, 128) -> (224, 224) nearest uint8 num_threads=32 7X 0.433ms vs 0.061ms (1, 1, 128, 128) -> (224, 224) nearest-exact float32 num_threads=32 10X 0.478ms vs 0.046ms (1, 1, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=32 8X 0.470ms vs 0.062ms ---------------------------------------------------------------------------------------------------- (1, 3, 224, 224) -> (600, 400) linear float32 num_threads=1 0.9X 4.5ms vs 5.2ms (1, 3, 224, 224) -> (600, 400) nearest float32 num_threads=1 1.5X 4.2ms vs 2.8ms (1, 3, 224, 224) -> (600, 400) nearest uint8 num_threads=1 1.8X 4.1ms vs 2.3ms (1, 3, 224, 224) -> (600, 400) nearest-exact float32 num_threads=1 1.6X 4.5ms vs 2.8ms (1, 3, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=1 1.9X 4.4ms vs 2.3ms (1, 1, 224, 224) -> (600, 400) linear float32 num_threads=1 9X 3.8ms vs 0.4ms (1, 1, 224, 224) -> (600, 400) nearest float32 num_threads=1 17X 4.0ms vs 0.2ms (1, 1, 224, 224) -> (600, 400) nearest uint8 num_threads=1 11X 3.9ms vs 0.4ms (1, 1, 224, 224) -> (600, 400) nearest-exact float32 num_threads=1 19X 4.4ms vs 0.2ms (1, 1, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=1 12X 4.3ms vs 0.4ms (1, 3, 224, 224) -> (600, 400) linear float32 num_threads=2 1.5X 4.5ms vs 3.1ms (1, 3, 224, 224) -> (600, 400) nearest float32 num_threads=2 1.4X 2.3ms vs 1.6ms (1, 3, 224, 224) -> (600, 400) nearest uint8 num_threads=2 1.7X 2.1ms vs 1.2ms (1, 3, 224, 224) -> (600, 400) nearest-exact float32 num_threads=2 1.6X 2.5ms vs 1.6ms (1, 3, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=2 1.8X 2.2ms vs 1.2ms (1, 1, 224, 224) -> (600, 400) linear float32 num_threads=2 15X 3.8ms vs 0.3ms (1, 1, 224, 224) -> (600, 400) nearest float32 num_threads=2 15X 2.2ms vs 0.1ms (1, 1, 224, 224) -> (600, 400) nearest uint8 num_threads=2 7X 2.0ms vs 0.3ms (1, 1, 224, 224) -> (600, 400) nearest-exact float32 num_threads=2 16X 2.4ms vs 0.1ms (1, 1, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=2 8X 2.2ms vs 0.3ms (1, 3, 224, 224) -> (600, 400) linear float32 num_threads=12 8X 5.2ms vs 0.7ms (1, 3, 224, 224) -> (600, 400) nearest float32 num_threads=12 1.3X 0.6ms vs 0.4ms (1, 3, 224, 224) -> (600, 400) nearest uint8 num_threads=12 1.7X 0.4ms vs 0.2ms (1, 3, 224, 224) -> (600, 400) nearest-exact float32 num_threads=12 1.4X 0.6ms vs 0.4ms (1, 3, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=12 1.8X 0.4ms vs 0.2ms (1, 1, 224, 224) -> (600, 400) linear float32 num_threads=12 36X 3.9ms vs 0.1ms (1, 1, 224, 224) -> (600, 400) nearest float32 num_threads=12 10X 0.526ms vs 0.051ms (1, 1, 224, 224) -> (600, 400) nearest uint8 num_threads=12 7X 0.514ms vs 0.069ms (1, 1, 224, 224) -> (600, 400) nearest-exact float32 num_threads=12 11X 0.569ms vs 0.052ms (1, 1, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=12 8X 0.557ms vs 0.070ms (1, 3, 224, 224) -> (600, 400) linear float32 num_threads=32 9X 4.5ms vs 0.5ms (1, 3, 224, 224) -> (600, 400) nearest float32 num_threads=32 0.5X 0.2ms vs 0.5ms (1, 3, 224, 224) -> (600, 400) nearest uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 224, 224) -> (600, 400) nearest-exact float32 num_threads=32 1.0X 0.5ms vs 0.5ms (1, 3, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 1, 224, 224) -> (600, 400) linear float32 num_threads=32 44X 3.864ms vs 0.087ms (1, 1, 224, 224) -> (600, 400) nearest float32 num_threads=32 10X 0.527ms vs 0.053ms (1, 1, 224, 224) -> (600, 400) nearest uint8 num_threads=32 7X 0.516ms vs 0.070ms (1, 1, 224, 224) -> (600, 400) nearest-exact float32 num_threads=32 10X 0.567ms vs 0.055ms (1, 1, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=32 8X 0.558ms vs 0.072ms ---------------------------------------------------------------------------------------------------- (1, 3, 256, 256) -> (320, 320) linear float32 num_threads=1 1.0X 1.9ms vs 1.9ms (1, 3, 256, 256) -> (320, 320) nearest float32 num_threads=1 2.0X 1.8ms vs 0.9ms (1, 3, 256, 256) -> (320, 320) nearest uint8 num_threads=1 1.7X 1.8ms vs 1.0ms (1, 3, 256, 256) -> (320, 320) nearest-exact float32 num_threads=1 2.1X 1.9ms vs 0.9ms (1, 3, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=1 1.9X 1.9ms vs 1.0ms (1, 1, 256, 256) -> (320, 320) linear float32 num_threads=1 9X 1.6ms vs 0.2ms (1, 1, 256, 256) -> (320, 320) nearest float32 num_threads=1 16X 1.7ms vs 0.1ms (1, 1, 256, 256) -> (320, 320) nearest uint8 num_threads=1 10X 1.7ms vs 0.2ms (1, 1, 256, 256) -> (320, 320) nearest-exact float32 num_threads=1 17X 1.9ms vs 0.1ms (1, 1, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=1 11X 1.8ms vs 0.2ms (1, 3, 256, 256) -> (320, 320) linear float32 num_threads=2 1.7X 1.9ms vs 1.1ms (1, 3, 256, 256) -> (320, 320) nearest float32 num_threads=2 2.0X 1.0ms vs 0.5ms (1, 3, 256, 256) -> (320, 320) nearest uint8 num_threads=2 1.7X 0.9ms vs 0.5ms (1, 3, 256, 256) -> (320, 320) nearest-exact float32 num_threads=2 2.3X 1.1ms vs 0.5ms (1, 3, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=2 1.8X 1.0ms vs 0.5ms (1, 1, 256, 256) -> (320, 320) linear float32 num_threads=2 8X 1.6ms vs 0.2ms (1, 1, 256, 256) -> (320, 320) nearest float32 num_threads=2 14X 0.931ms vs 0.067ms (1, 1, 256, 256) -> (320, 320) nearest uint8 num_threads=2 7X 0.9ms vs 0.1ms (1, 1, 256, 256) -> (320, 320) nearest-exact float32 num_threads=2 15X 1.016ms vs 0.069ms (1, 1, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=2 9X 0.9ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) linear float32 num_threads=12 8X 1.9ms vs 0.3ms (1, 3, 256, 256) -> (320, 320) nearest float32 num_threads=12 1.7X 0.2ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) nearest uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) nearest-exact float32 num_threads=12 1.9X 0.2ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=12 1.6X 0.2ms vs 0.1ms (1, 1, 256, 256) -> (320, 320) linear float32 num_threads=12 20X 1.630ms vs 0.081ms (1, 1, 256, 256) -> (320, 320) nearest float32 num_threads=12 10X 0.457ms vs 0.044ms (1, 1, 256, 256) -> (320, 320) nearest uint8 num_threads=12 7X 0.439ms vs 0.060ms (1, 1, 256, 256) -> (320, 320) nearest-exact float32 num_threads=12 11X 0.485ms vs 0.045ms (1, 1, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=12 8X 0.474ms vs 0.061ms (1, 3, 256, 256) -> (320, 320) linear float32 num_threads=32 8X 1.9ms vs 0.3ms (1, 3, 256, 256) -> (320, 320) nearest float32 num_threads=32 2.0X 0.2ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) nearest uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) nearest-exact float32 num_threads=32 1.4X 0.2ms vs 0.2ms (1, 3, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=32 1.4X 0.2ms vs 0.1ms (1, 1, 256, 256) -> (320, 320) linear float32 num_threads=32 21X 1.628ms vs 0.078ms (1, 1, 256, 256) -> (320, 320) nearest float32 num_threads=32 9X 0.453ms vs 0.048ms (1, 1, 256, 256) -> (320, 320) nearest uint8 num_threads=32 7X 0.445ms vs 0.063ms (1, 1, 256, 256) -> (320, 320) nearest-exact float32 num_threads=32 11X 0.535ms vs 0.048ms (1, 1, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=32 8X 0.502ms vs 0.063ms ---------------------------------------------------------------------------------------------------- (1, 3, 500, 500) -> (800, 800) linear float32 num_threads=1 1.0X 13.8ms vs 14.0ms (1, 3, 500, 500) -> (800, 800) nearest float32 num_threads=1 1.8X 13.1ms vs 7.4ms (1, 3, 500, 500) -> (800, 800) nearest uint8 num_threads=1 1.8X 11.1ms vs 6.1ms (1, 3, 500, 500) -> (800, 800) nearest-exact float32 num_threads=1 1.9X 13.9ms vs 7.4ms (1, 3, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=1 1.9X 11.8ms vs 6.1ms (1, 1, 500, 500) -> (800, 800) linear float32 num_threads=1 10X 10.2ms vs 1.1ms (1, 1, 500, 500) -> (800, 800) nearest float32 num_threads=1 19X 10.8ms vs 0.6ms (1, 1, 500, 500) -> (800, 800) nearest uint8 num_threads=1 11X 10.4ms vs 0.9ms (1, 1, 500, 500) -> (800, 800) nearest-exact float32 num_threads=1 20X 11.6ms vs 0.6ms (1, 1, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=1 12X 11.4ms vs 0.9ms (1, 3, 500, 500) -> (800, 800) linear float32 num_threads=2 1.8X 13.7ms vs 7.7ms (1, 3, 500, 500) -> (800, 800) nearest float32 num_threads=2 2.6X 7.3ms vs 2.8ms (1, 3, 500, 500) -> (800, 800) nearest uint8 num_threads=2 1.8X 5.6ms vs 3.1ms (1, 3, 500, 500) -> (800, 800) nearest-exact float32 num_threads=2 1.9X 7.9ms vs 4.1ms (1, 3, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=2 1.9X 6.0ms vs 3.1ms (1, 1, 500, 500) -> (800, 800) linear float32 num_threads=2 18X 10.1ms vs 0.6ms (1, 1, 500, 500) -> (800, 800) nearest float32 num_threads=2 19X 5.8ms vs 0.3ms (1, 1, 500, 500) -> (800, 800) nearest uint8 num_threads=2 10X 5.3ms vs 0.5ms (1, 1, 500, 500) -> (800, 800) nearest-exact float32 num_threads=2 20X 6.3ms vs 0.3ms (1, 1, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=2 11X 5.7ms vs 0.5ms (1, 3, 500, 500) -> (800, 800) linear float32 num_threads=12 8X 13.8ms vs 1.6ms (1, 3, 500, 500) -> (800, 800) nearest float32 num_threads=12 2.9X 1.5ms vs 0.5ms (1, 3, 500, 500) -> (800, 800) nearest uint8 num_threads=12 1.7X 1.0ms vs 0.5ms (1, 3, 500, 500) -> (800, 800) nearest-exact float32 num_threads=12 1.5X 1.5ms vs 1.0ms (1, 3, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=12 1.8X 1.0ms vs 0.6ms (1, 1, 500, 500) -> (800, 800) linear float32 num_threads=12 80X 10.1ms vs 0.1ms (1, 1, 500, 500) -> (800, 800) nearest float32 num_threads=12 13X 0.928ms vs 0.072ms (1, 1, 500, 500) -> (800, 800) nearest uint8 num_threads=12 8X 0.9ms vs 0.1ms (1, 1, 500, 500) -> (800, 800) nearest-exact float32 num_threads=12 13X 1.001ms vs 0.074ms (1, 1, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=12 9X 1.0ms vs 0.1ms (1, 3, 500, 500) -> (800, 800) linear float32 num_threads=32 18X 14.0ms vs 0.8ms (1, 3, 500, 500) -> (800, 800) nearest float32 num_threads=32 1.9X 1.0ms vs 0.6ms (1, 3, 500, 500) -> (800, 800) nearest uint8 num_threads=32 2.9X 0.7ms vs 0.2ms (1, 3, 500, 500) -> (800, 800) nearest-exact float32 num_threads=32 1.7X 0.9ms vs 0.6ms (1, 3, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=32 1.8X 0.4ms vs 0.2ms (1, 1, 500, 500) -> (800, 800) linear float32 num_threads=32 111X 10.254ms vs 0.092ms (1, 1, 500, 500) -> (800, 800) nearest float32 num_threads=32 14X 0.784ms vs 0.056ms (1, 1, 500, 500) -> (800, 800) nearest uint8 num_threads=32 7X 0.551ms vs 0.075ms (1, 1, 500, 500) -> (800, 800) nearest-exact float32 num_threads=32 11X 0.607ms vs 0.057ms (1, 1, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=32 8X 0.596ms vs 0.076ms ---------------------------------------------------------------------------------------------------- (1, 3, 224, 224) -> (64, 64) linear float32 num_threads=1 1.0X 0.084ms vs 0.084ms (1, 3, 224, 224) -> (64, 64) nearest float32 num_threads=1 1.0X 0.077ms vs 0.078ms (1, 3, 224, 224) -> (64, 64) nearest uint8 num_threads=1 1.0X 0.076ms vs 0.076ms (1, 3, 224, 224) -> (64, 64) nearest-exact float32 num_threads=1 1.0X 0.083ms vs 0.083ms (1, 3, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=1 1.0X 0.081ms vs 0.082ms (1, 1, 224, 224) -> (64, 64) linear float32 num_threads=1 1.0X 0.071ms vs 0.071ms (1, 1, 224, 224) -> (64, 64) nearest float32 num_threads=1 1.0X 0.074ms vs 0.074ms (1, 1, 224, 224) -> (64, 64) nearest uint8 num_threads=1 1.0X 0.072ms vs 0.072ms (1, 1, 224, 224) -> (64, 64) nearest-exact float32 num_threads=1 1.0X 0.080ms vs 0.080ms (1, 1, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=1 0.9X 0.078ms vs 0.084ms (1, 3, 224, 224) -> (64, 64) linear float32 num_threads=2 1.0X 0.083ms vs 0.084ms (1, 3, 224, 224) -> (64, 64) nearest float32 num_threads=2 1.0X 0.076ms vs 0.077ms (1, 3, 224, 224) -> (64, 64) nearest uint8 num_threads=2 1.0X 0.075ms vs 0.074ms (1, 3, 224, 224) -> (64, 64) nearest-exact float32 num_threads=2 1.0X 0.082ms vs 0.083ms (1, 3, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=2 1.0X 0.080ms vs 0.083ms (1, 1, 224, 224) -> (64, 64) linear float32 num_threads=2 1.0X 0.070ms vs 0.071ms (1, 1, 224, 224) -> (64, 64) nearest float32 num_threads=2 1.0X 0.073ms vs 0.075ms (1, 1, 224, 224) -> (64, 64) nearest uint8 num_threads=2 1.0X 0.071ms vs 0.072ms (1, 1, 224, 224) -> (64, 64) nearest-exact float32 num_threads=2 1.0X 0.079ms vs 0.080ms (1, 1, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=2 1.0X 0.077ms vs 0.079ms (1, 3, 224, 224) -> (64, 64) linear float32 num_threads=12 1.0X 0.083ms vs 0.084ms (1, 3, 224, 224) -> (64, 64) nearest float32 num_threads=12 1.0X 0.080ms vs 0.078ms (1, 3, 224, 224) -> (64, 64) nearest uint8 num_threads=12 1.0X 0.077ms vs 0.075ms (1, 3, 224, 224) -> (64, 64) nearest-exact float32 num_threads=12 1.0X 0.083ms vs 0.083ms (1, 3, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=12 1.0X 0.083ms vs 0.082ms (1, 1, 224, 224) -> (64, 64) linear float32 num_threads=12 1.0X 0.071ms vs 0.071ms (1, 1, 224, 224) -> (64, 64) nearest float32 num_threads=12 1.0X 0.076ms vs 0.074ms (1, 1, 224, 224) -> (64, 64) nearest uint8 num_threads=12 1.0X 0.073ms vs 0.071ms (1, 1, 224, 224) -> (64, 64) nearest-exact float32 num_threads=12 1.0X 0.080ms vs 0.080ms (1, 1, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=12 1.0X 0.080ms vs 0.078ms (1, 3, 224, 224) -> (64, 64) linear float32 num_threads=32 1.0X 0.084ms vs 0.084ms (1, 3, 224, 224) -> (64, 64) nearest float32 num_threads=32 1.0X 0.078ms vs 0.077ms (1, 3, 224, 224) -> (64, 64) nearest uint8 num_threads=32 1.0X 0.076ms vs 0.076ms (1, 3, 224, 224) -> (64, 64) nearest-exact float32 num_threads=32 1.0X 0.083ms vs 0.083ms (1, 3, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=32 1.0X 0.081ms vs 0.082ms (1, 1, 224, 224) -> (64, 64) linear float32 num_threads=32 1.0X 0.072ms vs 0.072ms (1, 1, 224, 224) -> (64, 64) nearest float32 num_threads=32 1.0X 0.074ms vs 0.075ms (1, 1, 224, 224) -> (64, 64) nearest uint8 num_threads=32 1.0X 0.072ms vs 0.072ms (1, 1, 224, 224) -> (64, 64) nearest-exact float32 num_threads=32 1.0X 0.077ms vs 0.080ms (1, 1, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=32 1.0X 0.076ms vs 0.079ms ---------------------------------------------------------------------------------------------------- (1, 3, 224, 224) -> (128, 128) linear float32 num_threads=1 1.0X 0.3ms vs 0.3ms (1, 3, 224, 224) -> (128, 128) nearest float32 num_threads=1 1.8X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest uint8 num_threads=1 1.6X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest-exact float32 num_threads=1 2.0X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=1 1.7X 0.3ms vs 0.2ms (1, 1, 224, 224) -> (128, 128) linear float32 num_threads=1 6X 0.265ms vs 0.044ms (1, 1, 224, 224) -> (128, 128) nearest float32 num_threads=1 10X 0.280ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest uint8 num_threads=1 7X 0.273ms vs 0.037ms (1, 1, 224, 224) -> (128, 128) nearest-exact float32 num_threads=1 11X 0.303ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=1 8X 0.297ms vs 0.038ms (1, 3, 224, 224) -> (128, 128) linear float32 num_threads=2 1.5X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest float32 num_threads=2 1.8X 0.163ms vs 0.093ms (1, 3, 224, 224) -> (128, 128) nearest uint8 num_threads=2 1.5X 0.2ms vs 0.1ms (1, 3, 224, 224) -> (128, 128) nearest-exact float32 num_threads=2 1.9X 0.180ms vs 0.096ms (1, 3, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=2 1.6X 0.2ms vs 0.1ms (1, 1, 224, 224) -> (128, 128) linear float32 num_threads=2 6X 0.264ms vs 0.044ms (1, 1, 224, 224) -> (128, 128) nearest float32 num_threads=2 10X 0.278ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest uint8 num_threads=2 7X 0.270ms vs 0.037ms (1, 1, 224, 224) -> (128, 128) nearest-exact float32 num_threads=2 11X 0.298ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=2 8X 0.293ms vs 0.037ms (1, 3, 224, 224) -> (128, 128) linear float32 num_threads=12 1.5X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest float32 num_threads=12 1.7X 0.158ms vs 0.095ms (1, 3, 224, 224) -> (128, 128) nearest uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 224, 224) -> (128, 128) nearest-exact float32 num_threads=12 1.7X 0.170ms vs 0.100ms (1, 3, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=12 1.6X 0.2ms vs 0.1ms (1, 1, 224, 224) -> (128, 128) linear float32 num_threads=12 6X 0.269ms vs 0.043ms (1, 1, 224, 224) -> (128, 128) nearest float32 num_threads=12 11X 0.291ms vs 0.027ms (1, 1, 224, 224) -> (128, 128) nearest uint8 num_threads=12 8X 0.281ms vs 0.037ms (1, 1, 224, 224) -> (128, 128) nearest-exact float32 num_threads=12 11X 0.305ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=12 8X 0.306ms vs 0.038ms (1, 3, 224, 224) -> (128, 128) linear float32 num_threads=32 1.5X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest float32 num_threads=32 1.6X 0.160ms vs 0.098ms (1, 3, 224, 224) -> (128, 128) nearest uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 224, 224) -> (128, 128) nearest-exact float32 num_threads=32 1.7X 0.171ms vs 0.099ms (1, 3, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 1, 224, 224) -> (128, 128) linear float32 num_threads=32 6X 0.269ms vs 0.044ms (1, 1, 224, 224) -> (128, 128) nearest float32 num_threads=32 10X 0.282ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest uint8 num_threads=32 7X 0.276ms vs 0.037ms (1, 1, 224, 224) -> (128, 128) nearest-exact float32 num_threads=32 11X 0.305ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=32 8X 0.299ms vs 0.038ms ---------------------------------------------------------------------------------------------------- (1, 3, 320, 320) -> (256, 256) linear float32 num_threads=1 1.0X 1.2ms vs 1.3ms (1, 3, 320, 320) -> (256, 256) nearest float32 num_threads=1 2.0X 1.2ms vs 0.6ms (1, 3, 320, 320) -> (256, 256) nearest uint8 num_threads=1 1.7X 1.1ms vs 0.7ms (1, 3, 320, 320) -> (256, 256) nearest-exact float32 num_threads=1 2.1X 1.2ms vs 0.6ms (1, 3, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=1 1.9X 1.2ms vs 0.7ms (1, 1, 320, 320) -> (256, 256) linear float32 num_threads=1 8X 1.1ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) nearest float32 num_threads=1 15X 1.109ms vs 0.073ms (1, 1, 320, 320) -> (256, 256) nearest uint8 num_threads=1 10X 1.1ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) nearest-exact float32 num_threads=1 16X 1.192ms vs 0.074ms (1, 1, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=1 11X 1.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) linear float32 num_threads=2 1.7X 1.2ms vs 0.7ms (1, 3, 320, 320) -> (256, 256) nearest float32 num_threads=2 2.0X 0.6ms vs 0.3ms (1, 3, 320, 320) -> (256, 256) nearest uint8 num_threads=2 1.7X 0.6ms vs 0.3ms (1, 3, 320, 320) -> (256, 256) nearest-exact float32 num_threads=2 2.2X 0.7ms vs 0.3ms (1, 3, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=2 1.8X 0.6ms vs 0.3ms (1, 1, 320, 320) -> (256, 256) linear float32 num_threads=2 9X 1.0ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) nearest float32 num_threads=2 11X 0.598ms vs 0.052ms (1, 1, 320, 320) -> (256, 256) nearest uint8 num_threads=2 8X 0.556ms vs 0.072ms (1, 1, 320, 320) -> (256, 256) nearest-exact float32 num_threads=2 12X 0.649ms vs 0.053ms (1, 1, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=2 8X 0.598ms vs 0.073ms (1, 3, 320, 320) -> (256, 256) linear float32 num_threads=12 5X 1.2ms vs 0.3ms (1, 3, 320, 320) -> (256, 256) nearest float32 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest uint8 num_threads=12 1.3X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest-exact float32 num_threads=12 1.6X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=12 1.4X 0.2ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) linear float32 num_threads=12 9X 1.0ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) nearest float32 num_threads=12 12X 0.572ms vs 0.048ms (1, 1, 320, 320) -> (256, 256) nearest uint8 num_threads=12 8X 0.560ms vs 0.068ms (1, 1, 320, 320) -> (256, 256) nearest-exact float32 num_threads=12 13X 0.617ms vs 0.049ms (1, 1, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=12 9X 0.604ms vs 0.068ms (1, 3, 320, 320) -> (256, 256) linear float32 num_threads=32 5X 1.2ms vs 0.3ms (1, 3, 320, 320) -> (256, 256) nearest float32 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest uint8 num_threads=32 1.4X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest-exact float32 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=32 1.4X 0.2ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) linear float32 num_threads=32 13X 1.042ms vs 0.081ms (1, 1, 320, 320) -> (256, 256) nearest float32 num_threads=32 12X 0.586ms vs 0.050ms (1, 1, 320, 320) -> (256, 256) nearest uint8 num_threads=32 8X 0.562ms vs 0.069ms (1, 1, 320, 320) -> (256, 256) nearest-exact float32 num_threads=32 12X 0.621ms vs 0.051ms (1, 1, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=32 9X 0.609ms vs 0.070ms ---------------------------------------------------------------------------------------------------- (1, 3, 600, 400) -> (224, 224) linear float32 num_threads=1 1.0X 1.0ms vs 1.0ms (1, 3, 600, 400) -> (224, 224) nearest float32 num_threads=1 1.9X 0.9ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest uint8 num_threads=1 1.7X 0.9ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest-exact float32 num_threads=1 2.1X 1.0ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=1 1.8X 0.9ms vs 0.5ms (1, 1, 600, 400) -> (224, 224) linear float32 num_threads=1 7X 0.8ms vs 0.1ms (1, 1, 600, 400) -> (224, 224) nearest float32 num_threads=1 14X 0.852ms vs 0.061ms (1, 1, 600, 400) -> (224, 224) nearest uint8 num_threads=1 9X 0.828ms vs 0.087ms (1, 1, 600, 400) -> (224, 224) nearest-exact float32 num_threads=1 15X 0.922ms vs 0.061ms (1, 1, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=1 10X 0.897ms vs 0.087ms (1, 3, 600, 400) -> (224, 224) linear float32 num_threads=2 1.6X 0.9ms vs 0.6ms (1, 3, 600, 400) -> (224, 224) nearest float32 num_threads=2 1.9X 0.5ms vs 0.2ms (1, 3, 600, 400) -> (224, 224) nearest uint8 num_threads=2 1.7X 0.4ms vs 0.3ms (1, 3, 600, 400) -> (224, 224) nearest-exact float32 num_threads=2 2.1X 0.5ms vs 0.3ms (1, 3, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=2 1.8X 0.5ms vs 0.3ms (1, 1, 600, 400) -> (224, 224) linear float32 num_threads=2 10X 0.808ms vs 0.084ms (1, 1, 600, 400) -> (224, 224) nearest float32 num_threads=2 10X 0.462ms vs 0.046ms (1, 1, 600, 400) -> (224, 224) nearest uint8 num_threads=2 7X 0.429ms vs 0.062ms (1, 1, 600, 400) -> (224, 224) nearest-exact float32 num_threads=2 12X 0.504ms vs 0.044ms (1, 1, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=2 7X 0.461ms vs 0.063ms (1, 3, 600, 400) -> (224, 224) linear float32 num_threads=12 4X 1.0ms vs 0.2ms (1, 3, 600, 400) -> (224, 224) nearest float32 num_threads=12 1.7X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest-exact float32 num_threads=12 1.9X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=12 1.6X 0.2ms vs 0.1ms (1, 1, 600, 400) -> (224, 224) linear float32 num_threads=12 12X 0.820ms vs 0.067ms (1, 1, 600, 400) -> (224, 224) nearest float32 num_threads=12 11X 0.438ms vs 0.041ms (1, 1, 600, 400) -> (224, 224) nearest uint8 num_threads=12 8X 0.431ms vs 0.056ms (1, 1, 600, 400) -> (224, 224) nearest-exact float32 num_threads=12 12X 0.482ms vs 0.041ms (1, 1, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=12 8X 0.467ms vs 0.056ms (1, 3, 600, 400) -> (224, 224) linear float32 num_threads=32 4X 1.0ms vs 0.3ms (1, 3, 600, 400) -> (224, 224) nearest float32 num_threads=32 1.7X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest-exact float32 num_threads=32 1.8X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 1, 600, 400) -> (224, 224) linear float32 num_threads=32 12X 0.824ms vs 0.070ms (1, 1, 600, 400) -> (224, 224) nearest float32 num_threads=32 10X 0.443ms vs 0.044ms (1, 1, 600, 400) -> (224, 224) nearest uint8 num_threads=32 7X 0.438ms vs 0.059ms (1, 1, 600, 400) -> (224, 224) nearest-exact float32 num_threads=32 11X 0.479ms vs 0.045ms (1, 1, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=32 8X 0.470ms vs 0.059ms ---------------------------------------------------------------------------------------------------- (1, 3, 800, 800) -> (500, 500) linear float32 num_threads=1 1.0X 4.7ms vs 4.7ms (1, 3, 800, 800) -> (500, 500) nearest float32 num_threads=1 2.0X 4.4ms vs 2.2ms (1, 3, 800, 800) -> (500, 500) nearest uint8 num_threads=1 1.8X 4.3ms vs 2.5ms (1, 3, 800, 800) -> (500, 500) nearest-exact float32 num_threads=1 2.1X 4.7ms vs 2.2ms (1, 3, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=1 1.9X 4.6ms vs 2.5ms (1, 1, 800, 800) -> (500, 500) linear float32 num_threads=1 9X 4.0ms vs 0.4ms (1, 1, 800, 800) -> (500, 500) nearest float32 num_threads=1 17X 4.2ms vs 0.2ms (1, 1, 800, 800) -> (500, 500) nearest uint8 num_threads=1 11X 4.1ms vs 0.4ms (1, 1, 800, 800) -> (500, 500) nearest-exact float32 num_threads=1 19X 4.6ms vs 0.2ms (1, 1, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=1 12X 4.5ms vs 0.4ms (1, 3, 800, 800) -> (500, 500) linear float32 num_threads=2 1.7X 4.7ms vs 2.7ms (1, 3, 800, 800) -> (500, 500) nearest float32 num_threads=2 2.1X 2.4ms vs 1.1ms (1, 3, 800, 800) -> (500, 500) nearest uint8 num_threads=2 1.8X 2.2ms vs 1.3ms (1, 3, 800, 800) -> (500, 500) nearest-exact float32 num_threads=2 2.3X 2.6ms vs 1.1ms (1, 3, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=2 1.9X 2.3ms vs 1.3ms (1, 1, 800, 800) -> (500, 500) linear float32 num_threads=2 15X 4.0ms vs 0.3ms (1, 1, 800, 800) -> (500, 500) nearest float32 num_threads=2 16X 2.3ms vs 0.1ms (1, 1, 800, 800) -> (500, 500) nearest uint8 num_threads=2 9X 2.1ms vs 0.2ms (1, 1, 800, 800) -> (500, 500) nearest-exact float32 num_threads=2 17X 2.5ms vs 0.1ms (1, 1, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=2 10X 2.3ms vs 0.2ms (1, 3, 800, 800) -> (500, 500) linear float32 num_threads=12 10X 4.7ms vs 0.5ms (1, 3, 800, 800) -> (500, 500) nearest float32 num_threads=12 1.9X 0.4ms vs 0.2ms (1, 3, 800, 800) -> (500, 500) nearest uint8 num_threads=12 1.7X 0.4ms vs 0.2ms (1, 3, 800, 800) -> (500, 500) nearest-exact float32 num_threads=12 1.9X 0.4ms vs 0.2ms (1, 3, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=12 1.8X 0.4ms vs 0.2ms (1, 1, 800, 800) -> (500, 500) linear float32 num_threads=12 41X 3.969ms vs 0.096ms (1, 1, 800, 800) -> (500, 500) nearest float32 num_threads=12 11X 0.545ms vs 0.051ms (1, 1, 800, 800) -> (500, 500) nearest uint8 num_threads=12 8X 0.532ms vs 0.070ms (1, 1, 800, 800) -> (500, 500) nearest-exact float32 num_threads=12 11X 0.590ms vs 0.052ms (1, 1, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=12 8X 0.578ms vs 0.071ms (1, 3, 800, 800) -> (500, 500) linear float32 num_threads=32 17X 4.7ms vs 0.3ms (1, 3, 800, 800) -> (500, 500) nearest float32 num_threads=32 1.8X 0.2ms vs 0.1ms (1, 3, 800, 800) -> (500, 500) nearest uint8 num_threads=32 2.0X 0.3ms vs 0.1ms (1, 3, 800, 800) -> (500, 500) nearest-exact float32 num_threads=32 1.9X 0.2ms vs 0.1ms (1, 3, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 1, 800, 800) -> (500, 500) linear float32 num_threads=32 45X 4.028ms vs 0.090ms (1, 1, 800, 800) -> (500, 500) nearest float32 num_threads=32 10X 0.549ms vs 0.053ms (1, 1, 800, 800) -> (500, 500) nearest uint8 num_threads=32 7X 0.536ms vs 0.072ms (1, 1, 800, 800) -> (500, 500) nearest-exact float32 num_threads=32 11X 0.592ms vs 0.055ms (1, 1, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=32 8X 0.581ms vs 0.074ms ``` </details> Code: <details> I used this file which is adapted from https://github.com/pytorch/pytorch/blob/master/benchmarks/operator_benchmark/pt/interpolate_test.py ```py import operator_benchmark as op_bench import torch """Microbenchmarks for interpolate operator.""" class InterpolateBenchmark(op_bench.TorchBenchmarkBase): def init(self, input_size, output_size, channels_last=False, mode='linear', dtype=torch.float): input_image = torch.randint(0, 256, size=input_size, dtype=dtype, device='cpu', requires_grad=self.auto_set()) if channels_last: if input_image.ndim == 4: input_image = input_image.contiguous(memory_format=torch.channels_last) elif input_image.ndim == 5: input_image = input_image.contiguous(memory_format=torch.channels_last_3d) else: raise ValueError( f"Can not set channels_last to the input of {input_image.ndim} dims" ) align_corners = None if "nearest" in mode else False if mode == "linear": mode = { 3: 'linear', 4: 'bilinear', 5: 'trilinear', }[input_image.ndim] self.inputs = { "input_image": input_image, "output_size": output_size, "mode": mode, "align_corners": align_corners, } self.set_module_name("interpolate") def forward(self, input_image, output_size, mode, align_corners): return torch.nn.functional.interpolate(input_image, size=output_size, mode=mode, align_corners=align_corners) def make_config(): sizes = ( ((224, 224), (64, 64)), ((224, 224), (128, 128)), ((600, 400), (224, 224)), ((320, 320), (256, 256)), ((800, 800), (500, 500)), ) attrs = [] for (HW1, HW2) in sizes: attrs.append([(1, 3, *HW1), HW2]) # 3 channels attrs.append([(1, 1, *HW1), HW2]) # 1 channel attrs.append([(1, 3, *HW2), HW1]) # 3 channels attrs.append([(1, 1, *HW2), HW1]) # 1 channel config = op_bench.config_list( attr_names=["input_size", "output_size"], attrs=attrs, cross_product_configs={ 'channels_last': [True], 'mode': ["linear", "nearest", "nearest-exact"], 'dtype': [torch.float, torch.uint8] }, tags=["short"], ) # Need to remove instances with both torch.int and linear # Note: this is naaaasty def get_mode(l): for d in l: if "mode" in d: return d["mode"] def get_dtype(l): for d in l: if "dtype" in d: return d["dtype"] config = [l for l in config if not(get_mode(l) == "linear" and get_dtype(l) == torch.uint8)] return config config = make_config() op_bench.generate_pt_test(config, InterpolateBenchmark) if __name__ == "__main__": op_bench.benchmark_runner.main() ``` with ``` for num_threads in 1 2 12 32; do echo "num_threads=$num_threads" && python -m pt.my_interpolate_test --iterations 1000 --omp_num_threads $num_threads ; done > $out_file ``` and this very ugly helper ```py import re with open("main") as f: main = f.readlines() with open("new") as f: new = f.readlines() out = [] for main_line, new_line in zip(main, new): if main_line.startswith("num_threads="): num_threads = int(main_line.split("=")[-1]) if main_line.startswith("# Input"): deets = f"{main_line.strip()}, {num_threads=}" if main_line.startswith("Forward"): main_time = float(main_line.split()[-1]) new_time = float(new_line.split()[-1]) ratio = main_time / new_time fmt = ".1f" if ratio < 3 else ".0f" improv = f"{ratio:{fmt}}X" time_fmt = ",.3f" if new_time < 100 else ",.1f" deets = deets.strip().replace("# Input: ", "") deets = deets.replace(": ", "=") deets = deets.replace("input_size=", "") deets = deets.replace(", output_size=", " -> ") deets = deets.replace("dtype=torch.", "") deets = deets.replace("mode=", "") deets = deets.replace("channels_last=True, ", "") split = deets.split(",") size = ','.join(split[:-3]) mode, dtype, threads = split[-3:] deets = f"{size:<30} {mode:<15} {dtype:<10} {threads:<15}" l = f"{deets} {improv:<5} {main_time / 1000:{time_fmt}}ms vs {new_time / 1000:{time_fmt}}ms" out.append(l) def key(s): # s = ''.join(s.split()[1:]) # remove "N.nX" part num_threads = (int(re.findall(r"num_threads=(\d+)", s)[0]),) input_shape, output_shape = re.findall("\(.*?\)", s) input_shape = input_shape[1:-1] # remove parenthesis input_HW = tuple(int(x) for x in input_shape.split(",")[-2:]) input_C = (-int(input_shape.split(",")[1]),) output_HW = tuple(int(x) for x in output_shape[1:-1].split(",")) is_downsample = (output_HW[0] < input_HW[0],) if "linear" in s: mode = "linear" elif "nearest-exact" in s: mode = "nearest-exact" else: assert "nearest" in s mode = "nearest" mode = (mode,) return is_downsample + input_HW + output_HW + num_threads + input_C + mode for i, l in enumerate(sorted(out, key=key)): if i % 10 == 0 and i % 40 != 0: print() if i % 40 == 0: print("-" * 100) print(l) ``` </details> Closes #83840 When this is merged we should be able to remove some hack in vision as well pytorch/vision#6661 (CC vfdev-5 datumbox ) [ghstack-poisoned]
This PR improves the speed of `interpolate()`: - on images and masks (`num_channels < 4`, `channels_last=True`) - for the following modes: linear (antialias=False), nearest (int and float), and nearest-exact (int and float) - for both upsampling and downsampling The actual speed-up ranges from 1.1X to 110X, but this depends on various factors like number of threads and of course input_size/output_size. In a typical torchvision ImageNet training job (where num_threads=1 because of DataLoader multi-processing), the following speed-ups should be expected (I ran much more benchmarks than this one, see below for more details): ``` (1, 3, 600, 400) -> (224, 224) linear float32 num_threads=1 1.0X 1.0ms vs 1.0ms (1, 3, 600, 400) -> (224, 224) nearest float32 num_threads=1 1.9X 0.9ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest uint8 num_threads=1 1.7X 0.9ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest-exact float32 num_threads=1 2.1X 1.0ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=1 1.8X 0.9ms vs 0.5ms (1, 1, 600, 400) -> (224, 224) linear float32 num_threads=1 7X 0.8ms vs 0.1ms (1, 1, 600, 400) -> (224, 224) nearest float32 num_threads=1 14X 0.852ms vs 0.061ms (1, 1, 600, 400) -> (224, 224) nearest uint8 num_threads=1 9X 0.828ms vs 0.087ms (1, 1, 600, 400) -> (224, 224) nearest-exact float32 num_threads=1 15X 0.922ms vs 0.061ms (1, 1, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=1 10X 0.897ms vs 0.087ms ``` An immediate follow-up to this PR would be to do the same changes for the 3D kernels. Thanks a ton @fmassa for the help! ### Speedup benchmarks: Results: <details> ``` ---------------------------------------------------------------------------------------------------- (1, 3, 64, 64) -> (224, 224) linear float32 num_threads=1 0.9X 0.9ms vs 1.1ms (1, 3, 64, 64) -> (224, 224) nearest float32 num_threads=1 1.6X 0.9ms vs 0.5ms (1, 3, 64, 64) -> (224, 224) nearest uint8 num_threads=1 1.7X 0.9ms vs 0.5ms (1, 3, 64, 64) -> (224, 224) nearest-exact float32 num_threads=1 1.7X 1.0ms vs 0.5ms (1, 3, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=1 1.9X 0.9ms vs 0.5ms (1, 1, 64, 64) -> (224, 224) linear float32 num_threads=1 8X 0.806ms vs 0.097ms (1, 1, 64, 64) -> (224, 224) nearest float32 num_threads=1 15X 0.848ms vs 0.056ms (1, 1, 64, 64) -> (224, 224) nearest uint8 num_threads=1 10X 0.828ms vs 0.084ms (1, 1, 64, 64) -> (224, 224) nearest-exact float32 num_threads=1 16X 0.914ms vs 0.057ms (1, 1, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=1 10X 0.900ms vs 0.086ms (1, 3, 64, 64) -> (224, 224) linear float32 num_threads=2 1.6X 1.1ms vs 0.7ms (1, 3, 64, 64) -> (224, 224) nearest float32 num_threads=2 1.6X 0.6ms vs 0.4ms (1, 3, 64, 64) -> (224, 224) nearest uint8 num_threads=2 1.7X 0.4ms vs 0.3ms (1, 3, 64, 64) -> (224, 224) nearest-exact float32 num_threads=2 1.7X 0.6ms vs 0.4ms (1, 3, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=2 1.7X 0.5ms vs 0.3ms (1, 1, 64, 64) -> (224, 224) linear float32 num_threads=2 9X 0.800ms vs 0.088ms (1, 1, 64, 64) -> (224, 224) nearest float32 num_threads=2 11X 0.459ms vs 0.043ms (1, 1, 64, 64) -> (224, 224) nearest uint8 num_threads=2 7X 0.424ms vs 0.064ms (1, 1, 64, 64) -> (224, 224) nearest-exact float32 num_threads=2 12X 0.503ms vs 0.043ms (1, 1, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=2 8X 0.461ms vs 0.059ms (1, 3, 64, 64) -> (224, 224) linear float32 num_threads=12 3X 1.1ms vs 0.3ms (1, 3, 64, 64) -> (224, 224) nearest float32 num_threads=12 1.6X 0.3ms vs 0.2ms (1, 3, 64, 64) -> (224, 224) nearest uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 64, 64) -> (224, 224) nearest-exact float32 num_threads=12 1.5X 0.3ms vs 0.2ms (1, 3, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 1, 64, 64) -> (224, 224) linear float32 num_threads=12 5X 0.8ms vs 0.2ms (1, 1, 64, 64) -> (224, 224) nearest float32 num_threads=12 10X 0.445ms vs 0.047ms (1, 1, 64, 64) -> (224, 224) nearest uint8 num_threads=12 7X 0.432ms vs 0.062ms (1, 1, 64, 64) -> (224, 224) nearest-exact float32 num_threads=12 10X 0.478ms vs 0.046ms (1, 1, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=12 7X 0.470ms vs 0.063ms (1, 3, 64, 64) -> (224, 224) linear float32 num_threads=32 3X 1.1ms vs 0.4ms (1, 3, 64, 64) -> (224, 224) nearest float32 num_threads=32 1.8X 0.3ms vs 0.2ms (1, 3, 64, 64) -> (224, 224) nearest uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 64, 64) -> (224, 224) nearest-exact float32 num_threads=32 1.4X 0.3ms vs 0.2ms (1, 3, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 1, 64, 64) -> (224, 224) linear float32 num_threads=32 11X 0.815ms vs 0.074ms (1, 1, 64, 64) -> (224, 224) nearest float32 num_threads=32 10X 0.443ms vs 0.045ms (1, 1, 64, 64) -> (224, 224) nearest uint8 num_threads=32 7X 0.436ms vs 0.061ms (1, 1, 64, 64) -> (224, 224) nearest-exact float32 num_threads=32 10X 0.478ms vs 0.046ms (1, 1, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=32 8X 0.470ms vs 0.061ms ---------------------------------------------------------------------------------------------------- (1, 3, 128, 128) -> (224, 224) linear float32 num_threads=1 0.9X 0.9ms vs 1.1ms (1, 3, 128, 128) -> (224, 224) nearest float32 num_threads=1 1.5X 0.9ms vs 0.6ms (1, 3, 128, 128) -> (224, 224) nearest uint8 num_threads=1 1.7X 0.9ms vs 0.5ms (1, 3, 128, 128) -> (224, 224) nearest-exact float32 num_threads=1 1.6X 1.0ms vs 0.6ms (1, 3, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=1 1.8X 0.9ms vs 0.5ms (1, 1, 128, 128) -> (224, 224) linear float32 num_threads=1 8X 0.808ms vs 0.099ms (1, 1, 128, 128) -> (224, 224) nearest float32 num_threads=1 15X 0.848ms vs 0.058ms (1, 1, 128, 128) -> (224, 224) nearest uint8 num_threads=1 9X 0.820ms vs 0.087ms (1, 1, 128, 128) -> (224, 224) nearest-exact float32 num_threads=1 16X 0.909ms vs 0.059ms (1, 1, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=1 10X 0.898ms vs 0.088ms (1, 3, 128, 128) -> (224, 224) linear float32 num_threads=2 1.4X 0.9ms vs 0.7ms (1, 3, 128, 128) -> (224, 224) nearest float32 num_threads=2 1.5X 0.5ms vs 0.3ms (1, 3, 128, 128) -> (224, 224) nearest uint8 num_threads=2 1.7X 0.4ms vs 0.3ms (1, 3, 128, 128) -> (224, 224) nearest-exact float32 num_threads=2 1.5X 0.5ms vs 0.4ms (1, 3, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=2 1.8X 0.5ms vs 0.3ms (1, 1, 128, 128) -> (224, 224) linear float32 num_threads=2 9X 0.799ms vs 0.090ms (1, 1, 128, 128) -> (224, 224) nearest float32 num_threads=2 10X 0.459ms vs 0.045ms (1, 1, 128, 128) -> (224, 224) nearest uint8 num_threads=2 7X 0.427ms vs 0.059ms (1, 1, 128, 128) -> (224, 224) nearest-exact float32 num_threads=2 11X 0.501ms vs 0.044ms (1, 1, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=2 8X 0.460ms vs 0.060ms (1, 3, 128, 128) -> (224, 224) linear float32 num_threads=12 2.9X 1.0ms vs 0.3ms (1, 3, 128, 128) -> (224, 224) nearest float32 num_threads=12 1.2X 0.2ms vs 0.2ms (1, 3, 128, 128) -> (224, 224) nearest uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 128, 128) -> (224, 224) nearest-exact float32 num_threads=12 1.1X 0.2ms vs 0.2ms (1, 3, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=12 1.6X 0.2ms vs 0.1ms (1, 1, 128, 128) -> (224, 224) linear float32 num_threads=12 12X 0.809ms vs 0.068ms (1, 1, 128, 128) -> (224, 224) nearest float32 num_threads=12 11X 0.438ms vs 0.041ms (1, 1, 128, 128) -> (224, 224) nearest uint8 num_threads=12 8X 0.432ms vs 0.055ms (1, 1, 128, 128) -> (224, 224) nearest-exact float32 num_threads=12 12X 0.480ms vs 0.041ms (1, 1, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=12 8X 0.464ms vs 0.056ms (1, 3, 128, 128) -> (224, 224) linear float32 num_threads=32 3X 1.1ms vs 0.3ms (1, 3, 128, 128) -> (224, 224) nearest float32 num_threads=32 1.3X 0.3ms vs 0.2ms (1, 3, 128, 128) -> (224, 224) nearest uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 128, 128) -> (224, 224) nearest-exact float32 num_threads=32 1.4X 0.3ms vs 0.2ms (1, 3, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 1, 128, 128) -> (224, 224) linear float32 num_threads=32 11X 0.813ms vs 0.075ms (1, 1, 128, 128) -> (224, 224) nearest float32 num_threads=32 10X 0.443ms vs 0.046ms (1, 1, 128, 128) -> (224, 224) nearest uint8 num_threads=32 7X 0.433ms vs 0.061ms (1, 1, 128, 128) -> (224, 224) nearest-exact float32 num_threads=32 10X 0.478ms vs 0.046ms (1, 1, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=32 8X 0.470ms vs 0.062ms ---------------------------------------------------------------------------------------------------- (1, 3, 224, 224) -> (600, 400) linear float32 num_threads=1 0.9X 4.5ms vs 5.2ms (1, 3, 224, 224) -> (600, 400) nearest float32 num_threads=1 1.5X 4.2ms vs 2.8ms (1, 3, 224, 224) -> (600, 400) nearest uint8 num_threads=1 1.8X 4.1ms vs 2.3ms (1, 3, 224, 224) -> (600, 400) nearest-exact float32 num_threads=1 1.6X 4.5ms vs 2.8ms (1, 3, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=1 1.9X 4.4ms vs 2.3ms (1, 1, 224, 224) -> (600, 400) linear float32 num_threads=1 9X 3.8ms vs 0.4ms (1, 1, 224, 224) -> (600, 400) nearest float32 num_threads=1 17X 4.0ms vs 0.2ms (1, 1, 224, 224) -> (600, 400) nearest uint8 num_threads=1 11X 3.9ms vs 0.4ms (1, 1, 224, 224) -> (600, 400) nearest-exact float32 num_threads=1 19X 4.4ms vs 0.2ms (1, 1, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=1 12X 4.3ms vs 0.4ms (1, 3, 224, 224) -> (600, 400) linear float32 num_threads=2 1.5X 4.5ms vs 3.1ms (1, 3, 224, 224) -> (600, 400) nearest float32 num_threads=2 1.4X 2.3ms vs 1.6ms (1, 3, 224, 224) -> (600, 400) nearest uint8 num_threads=2 1.7X 2.1ms vs 1.2ms (1, 3, 224, 224) -> (600, 400) nearest-exact float32 num_threads=2 1.6X 2.5ms vs 1.6ms (1, 3, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=2 1.8X 2.2ms vs 1.2ms (1, 1, 224, 224) -> (600, 400) linear float32 num_threads=2 15X 3.8ms vs 0.3ms (1, 1, 224, 224) -> (600, 400) nearest float32 num_threads=2 15X 2.2ms vs 0.1ms (1, 1, 224, 224) -> (600, 400) nearest uint8 num_threads=2 7X 2.0ms vs 0.3ms (1, 1, 224, 224) -> (600, 400) nearest-exact float32 num_threads=2 16X 2.4ms vs 0.1ms (1, 1, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=2 8X 2.2ms vs 0.3ms (1, 3, 224, 224) -> (600, 400) linear float32 num_threads=12 8X 5.2ms vs 0.7ms (1, 3, 224, 224) -> (600, 400) nearest float32 num_threads=12 1.3X 0.6ms vs 0.4ms (1, 3, 224, 224) -> (600, 400) nearest uint8 num_threads=12 1.7X 0.4ms vs 0.2ms (1, 3, 224, 224) -> (600, 400) nearest-exact float32 num_threads=12 1.4X 0.6ms vs 0.4ms (1, 3, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=12 1.8X 0.4ms vs 0.2ms (1, 1, 224, 224) -> (600, 400) linear float32 num_threads=12 36X 3.9ms vs 0.1ms (1, 1, 224, 224) -> (600, 400) nearest float32 num_threads=12 10X 0.526ms vs 0.051ms (1, 1, 224, 224) -> (600, 400) nearest uint8 num_threads=12 7X 0.514ms vs 0.069ms (1, 1, 224, 224) -> (600, 400) nearest-exact float32 num_threads=12 11X 0.569ms vs 0.052ms (1, 1, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=12 8X 0.557ms vs 0.070ms (1, 3, 224, 224) -> (600, 400) linear float32 num_threads=32 9X 4.5ms vs 0.5ms (1, 3, 224, 224) -> (600, 400) nearest float32 num_threads=32 0.5X 0.2ms vs 0.5ms (1, 3, 224, 224) -> (600, 400) nearest uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 224, 224) -> (600, 400) nearest-exact float32 num_threads=32 1.0X 0.5ms vs 0.5ms (1, 3, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 1, 224, 224) -> (600, 400) linear float32 num_threads=32 44X 3.864ms vs 0.087ms (1, 1, 224, 224) -> (600, 400) nearest float32 num_threads=32 10X 0.527ms vs 0.053ms (1, 1, 224, 224) -> (600, 400) nearest uint8 num_threads=32 7X 0.516ms vs 0.070ms (1, 1, 224, 224) -> (600, 400) nearest-exact float32 num_threads=32 10X 0.567ms vs 0.055ms (1, 1, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=32 8X 0.558ms vs 0.072ms ---------------------------------------------------------------------------------------------------- (1, 3, 256, 256) -> (320, 320) linear float32 num_threads=1 1.0X 1.9ms vs 1.9ms (1, 3, 256, 256) -> (320, 320) nearest float32 num_threads=1 2.0X 1.8ms vs 0.9ms (1, 3, 256, 256) -> (320, 320) nearest uint8 num_threads=1 1.7X 1.8ms vs 1.0ms (1, 3, 256, 256) -> (320, 320) nearest-exact float32 num_threads=1 2.1X 1.9ms vs 0.9ms (1, 3, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=1 1.9X 1.9ms vs 1.0ms (1, 1, 256, 256) -> (320, 320) linear float32 num_threads=1 9X 1.6ms vs 0.2ms (1, 1, 256, 256) -> (320, 320) nearest float32 num_threads=1 16X 1.7ms vs 0.1ms (1, 1, 256, 256) -> (320, 320) nearest uint8 num_threads=1 10X 1.7ms vs 0.2ms (1, 1, 256, 256) -> (320, 320) nearest-exact float32 num_threads=1 17X 1.9ms vs 0.1ms (1, 1, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=1 11X 1.8ms vs 0.2ms (1, 3, 256, 256) -> (320, 320) linear float32 num_threads=2 1.7X 1.9ms vs 1.1ms (1, 3, 256, 256) -> (320, 320) nearest float32 num_threads=2 2.0X 1.0ms vs 0.5ms (1, 3, 256, 256) -> (320, 320) nearest uint8 num_threads=2 1.7X 0.9ms vs 0.5ms (1, 3, 256, 256) -> (320, 320) nearest-exact float32 num_threads=2 2.3X 1.1ms vs 0.5ms (1, 3, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=2 1.8X 1.0ms vs 0.5ms (1, 1, 256, 256) -> (320, 320) linear float32 num_threads=2 8X 1.6ms vs 0.2ms (1, 1, 256, 256) -> (320, 320) nearest float32 num_threads=2 14X 0.931ms vs 0.067ms (1, 1, 256, 256) -> (320, 320) nearest uint8 num_threads=2 7X 0.9ms vs 0.1ms (1, 1, 256, 256) -> (320, 320) nearest-exact float32 num_threads=2 15X 1.016ms vs 0.069ms (1, 1, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=2 9X 0.9ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) linear float32 num_threads=12 8X 1.9ms vs 0.3ms (1, 3, 256, 256) -> (320, 320) nearest float32 num_threads=12 1.7X 0.2ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) nearest uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) nearest-exact float32 num_threads=12 1.9X 0.2ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=12 1.6X 0.2ms vs 0.1ms (1, 1, 256, 256) -> (320, 320) linear float32 num_threads=12 20X 1.630ms vs 0.081ms (1, 1, 256, 256) -> (320, 320) nearest float32 num_threads=12 10X 0.457ms vs 0.044ms (1, 1, 256, 256) -> (320, 320) nearest uint8 num_threads=12 7X 0.439ms vs 0.060ms (1, 1, 256, 256) -> (320, 320) nearest-exact float32 num_threads=12 11X 0.485ms vs 0.045ms (1, 1, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=12 8X 0.474ms vs 0.061ms (1, 3, 256, 256) -> (320, 320) linear float32 num_threads=32 8X 1.9ms vs 0.3ms (1, 3, 256, 256) -> (320, 320) nearest float32 num_threads=32 2.0X 0.2ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) nearest uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) nearest-exact float32 num_threads=32 1.4X 0.2ms vs 0.2ms (1, 3, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=32 1.4X 0.2ms vs 0.1ms (1, 1, 256, 256) -> (320, 320) linear float32 num_threads=32 21X 1.628ms vs 0.078ms (1, 1, 256, 256) -> (320, 320) nearest float32 num_threads=32 9X 0.453ms vs 0.048ms (1, 1, 256, 256) -> (320, 320) nearest uint8 num_threads=32 7X 0.445ms vs 0.063ms (1, 1, 256, 256) -> (320, 320) nearest-exact float32 num_threads=32 11X 0.535ms vs 0.048ms (1, 1, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=32 8X 0.502ms vs 0.063ms ---------------------------------------------------------------------------------------------------- (1, 3, 500, 500) -> (800, 800) linear float32 num_threads=1 1.0X 13.8ms vs 14.0ms (1, 3, 500, 500) -> (800, 800) nearest float32 num_threads=1 1.8X 13.1ms vs 7.4ms (1, 3, 500, 500) -> (800, 800) nearest uint8 num_threads=1 1.8X 11.1ms vs 6.1ms (1, 3, 500, 500) -> (800, 800) nearest-exact float32 num_threads=1 1.9X 13.9ms vs 7.4ms (1, 3, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=1 1.9X 11.8ms vs 6.1ms (1, 1, 500, 500) -> (800, 800) linear float32 num_threads=1 10X 10.2ms vs 1.1ms (1, 1, 500, 500) -> (800, 800) nearest float32 num_threads=1 19X 10.8ms vs 0.6ms (1, 1, 500, 500) -> (800, 800) nearest uint8 num_threads=1 11X 10.4ms vs 0.9ms (1, 1, 500, 500) -> (800, 800) nearest-exact float32 num_threads=1 20X 11.6ms vs 0.6ms (1, 1, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=1 12X 11.4ms vs 0.9ms (1, 3, 500, 500) -> (800, 800) linear float32 num_threads=2 1.8X 13.7ms vs 7.7ms (1, 3, 500, 500) -> (800, 800) nearest float32 num_threads=2 2.6X 7.3ms vs 2.8ms (1, 3, 500, 500) -> (800, 800) nearest uint8 num_threads=2 1.8X 5.6ms vs 3.1ms (1, 3, 500, 500) -> (800, 800) nearest-exact float32 num_threads=2 1.9X 7.9ms vs 4.1ms (1, 3, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=2 1.9X 6.0ms vs 3.1ms (1, 1, 500, 500) -> (800, 800) linear float32 num_threads=2 18X 10.1ms vs 0.6ms (1, 1, 500, 500) -> (800, 800) nearest float32 num_threads=2 19X 5.8ms vs 0.3ms (1, 1, 500, 500) -> (800, 800) nearest uint8 num_threads=2 10X 5.3ms vs 0.5ms (1, 1, 500, 500) -> (800, 800) nearest-exact float32 num_threads=2 20X 6.3ms vs 0.3ms (1, 1, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=2 11X 5.7ms vs 0.5ms (1, 3, 500, 500) -> (800, 800) linear float32 num_threads=12 8X 13.8ms vs 1.6ms (1, 3, 500, 500) -> (800, 800) nearest float32 num_threads=12 2.9X 1.5ms vs 0.5ms (1, 3, 500, 500) -> (800, 800) nearest uint8 num_threads=12 1.7X 1.0ms vs 0.5ms (1, 3, 500, 500) -> (800, 800) nearest-exact float32 num_threads=12 1.5X 1.5ms vs 1.0ms (1, 3, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=12 1.8X 1.0ms vs 0.6ms (1, 1, 500, 500) -> (800, 800) linear float32 num_threads=12 80X 10.1ms vs 0.1ms (1, 1, 500, 500) -> (800, 800) nearest float32 num_threads=12 13X 0.928ms vs 0.072ms (1, 1, 500, 500) -> (800, 800) nearest uint8 num_threads=12 8X 0.9ms vs 0.1ms (1, 1, 500, 500) -> (800, 800) nearest-exact float32 num_threads=12 13X 1.001ms vs 0.074ms (1, 1, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=12 9X 1.0ms vs 0.1ms (1, 3, 500, 500) -> (800, 800) linear float32 num_threads=32 18X 14.0ms vs 0.8ms (1, 3, 500, 500) -> (800, 800) nearest float32 num_threads=32 1.9X 1.0ms vs 0.6ms (1, 3, 500, 500) -> (800, 800) nearest uint8 num_threads=32 2.9X 0.7ms vs 0.2ms (1, 3, 500, 500) -> (800, 800) nearest-exact float32 num_threads=32 1.7X 0.9ms vs 0.6ms (1, 3, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=32 1.8X 0.4ms vs 0.2ms (1, 1, 500, 500) -> (800, 800) linear float32 num_threads=32 111X 10.254ms vs 0.092ms (1, 1, 500, 500) -> (800, 800) nearest float32 num_threads=32 14X 0.784ms vs 0.056ms (1, 1, 500, 500) -> (800, 800) nearest uint8 num_threads=32 7X 0.551ms vs 0.075ms (1, 1, 500, 500) -> (800, 800) nearest-exact float32 num_threads=32 11X 0.607ms vs 0.057ms (1, 1, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=32 8X 0.596ms vs 0.076ms ---------------------------------------------------------------------------------------------------- (1, 3, 224, 224) -> (64, 64) linear float32 num_threads=1 1.0X 0.084ms vs 0.084ms (1, 3, 224, 224) -> (64, 64) nearest float32 num_threads=1 1.0X 0.077ms vs 0.078ms (1, 3, 224, 224) -> (64, 64) nearest uint8 num_threads=1 1.0X 0.076ms vs 0.076ms (1, 3, 224, 224) -> (64, 64) nearest-exact float32 num_threads=1 1.0X 0.083ms vs 0.083ms (1, 3, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=1 1.0X 0.081ms vs 0.082ms (1, 1, 224, 224) -> (64, 64) linear float32 num_threads=1 1.0X 0.071ms vs 0.071ms (1, 1, 224, 224) -> (64, 64) nearest float32 num_threads=1 1.0X 0.074ms vs 0.074ms (1, 1, 224, 224) -> (64, 64) nearest uint8 num_threads=1 1.0X 0.072ms vs 0.072ms (1, 1, 224, 224) -> (64, 64) nearest-exact float32 num_threads=1 1.0X 0.080ms vs 0.080ms (1, 1, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=1 0.9X 0.078ms vs 0.084ms (1, 3, 224, 224) -> (64, 64) linear float32 num_threads=2 1.0X 0.083ms vs 0.084ms (1, 3, 224, 224) -> (64, 64) nearest float32 num_threads=2 1.0X 0.076ms vs 0.077ms (1, 3, 224, 224) -> (64, 64) nearest uint8 num_threads=2 1.0X 0.075ms vs 0.074ms (1, 3, 224, 224) -> (64, 64) nearest-exact float32 num_threads=2 1.0X 0.082ms vs 0.083ms (1, 3, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=2 1.0X 0.080ms vs 0.083ms (1, 1, 224, 224) -> (64, 64) linear float32 num_threads=2 1.0X 0.070ms vs 0.071ms (1, 1, 224, 224) -> (64, 64) nearest float32 num_threads=2 1.0X 0.073ms vs 0.075ms (1, 1, 224, 224) -> (64, 64) nearest uint8 num_threads=2 1.0X 0.071ms vs 0.072ms (1, 1, 224, 224) -> (64, 64) nearest-exact float32 num_threads=2 1.0X 0.079ms vs 0.080ms (1, 1, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=2 1.0X 0.077ms vs 0.079ms (1, 3, 224, 224) -> (64, 64) linear float32 num_threads=12 1.0X 0.083ms vs 0.084ms (1, 3, 224, 224) -> (64, 64) nearest float32 num_threads=12 1.0X 0.080ms vs 0.078ms (1, 3, 224, 224) -> (64, 64) nearest uint8 num_threads=12 1.0X 0.077ms vs 0.075ms (1, 3, 224, 224) -> (64, 64) nearest-exact float32 num_threads=12 1.0X 0.083ms vs 0.083ms (1, 3, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=12 1.0X 0.083ms vs 0.082ms (1, 1, 224, 224) -> (64, 64) linear float32 num_threads=12 1.0X 0.071ms vs 0.071ms (1, 1, 224, 224) -> (64, 64) nearest float32 num_threads=12 1.0X 0.076ms vs 0.074ms (1, 1, 224, 224) -> (64, 64) nearest uint8 num_threads=12 1.0X 0.073ms vs 0.071ms (1, 1, 224, 224) -> (64, 64) nearest-exact float32 num_threads=12 1.0X 0.080ms vs 0.080ms (1, 1, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=12 1.0X 0.080ms vs 0.078ms (1, 3, 224, 224) -> (64, 64) linear float32 num_threads=32 1.0X 0.084ms vs 0.084ms (1, 3, 224, 224) -> (64, 64) nearest float32 num_threads=32 1.0X 0.078ms vs 0.077ms (1, 3, 224, 224) -> (64, 64) nearest uint8 num_threads=32 1.0X 0.076ms vs 0.076ms (1, 3, 224, 224) -> (64, 64) nearest-exact float32 num_threads=32 1.0X 0.083ms vs 0.083ms (1, 3, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=32 1.0X 0.081ms vs 0.082ms (1, 1, 224, 224) -> (64, 64) linear float32 num_threads=32 1.0X 0.072ms vs 0.072ms (1, 1, 224, 224) -> (64, 64) nearest float32 num_threads=32 1.0X 0.074ms vs 0.075ms (1, 1, 224, 224) -> (64, 64) nearest uint8 num_threads=32 1.0X 0.072ms vs 0.072ms (1, 1, 224, 224) -> (64, 64) nearest-exact float32 num_threads=32 1.0X 0.077ms vs 0.080ms (1, 1, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=32 1.0X 0.076ms vs 0.079ms ---------------------------------------------------------------------------------------------------- (1, 3, 224, 224) -> (128, 128) linear float32 num_threads=1 1.0X 0.3ms vs 0.3ms (1, 3, 224, 224) -> (128, 128) nearest float32 num_threads=1 1.8X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest uint8 num_threads=1 1.6X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest-exact float32 num_threads=1 2.0X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=1 1.7X 0.3ms vs 0.2ms (1, 1, 224, 224) -> (128, 128) linear float32 num_threads=1 6X 0.265ms vs 0.044ms (1, 1, 224, 224) -> (128, 128) nearest float32 num_threads=1 10X 0.280ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest uint8 num_threads=1 7X 0.273ms vs 0.037ms (1, 1, 224, 224) -> (128, 128) nearest-exact float32 num_threads=1 11X 0.303ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=1 8X 0.297ms vs 0.038ms (1, 3, 224, 224) -> (128, 128) linear float32 num_threads=2 1.5X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest float32 num_threads=2 1.8X 0.163ms vs 0.093ms (1, 3, 224, 224) -> (128, 128) nearest uint8 num_threads=2 1.5X 0.2ms vs 0.1ms (1, 3, 224, 224) -> (128, 128) nearest-exact float32 num_threads=2 1.9X 0.180ms vs 0.096ms (1, 3, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=2 1.6X 0.2ms vs 0.1ms (1, 1, 224, 224) -> (128, 128) linear float32 num_threads=2 6X 0.264ms vs 0.044ms (1, 1, 224, 224) -> (128, 128) nearest float32 num_threads=2 10X 0.278ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest uint8 num_threads=2 7X 0.270ms vs 0.037ms (1, 1, 224, 224) -> (128, 128) nearest-exact float32 num_threads=2 11X 0.298ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=2 8X 0.293ms vs 0.037ms (1, 3, 224, 224) -> (128, 128) linear float32 num_threads=12 1.5X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest float32 num_threads=12 1.7X 0.158ms vs 0.095ms (1, 3, 224, 224) -> (128, 128) nearest uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 224, 224) -> (128, 128) nearest-exact float32 num_threads=12 1.7X 0.170ms vs 0.100ms (1, 3, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=12 1.6X 0.2ms vs 0.1ms (1, 1, 224, 224) -> (128, 128) linear float32 num_threads=12 6X 0.269ms vs 0.043ms (1, 1, 224, 224) -> (128, 128) nearest float32 num_threads=12 11X 0.291ms vs 0.027ms (1, 1, 224, 224) -> (128, 128) nearest uint8 num_threads=12 8X 0.281ms vs 0.037ms (1, 1, 224, 224) -> (128, 128) nearest-exact float32 num_threads=12 11X 0.305ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=12 8X 0.306ms vs 0.038ms (1, 3, 224, 224) -> (128, 128) linear float32 num_threads=32 1.5X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest float32 num_threads=32 1.6X 0.160ms vs 0.098ms (1, 3, 224, 224) -> (128, 128) nearest uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 224, 224) -> (128, 128) nearest-exact float32 num_threads=32 1.7X 0.171ms vs 0.099ms (1, 3, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 1, 224, 224) -> (128, 128) linear float32 num_threads=32 6X 0.269ms vs 0.044ms (1, 1, 224, 224) -> (128, 128) nearest float32 num_threads=32 10X 0.282ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest uint8 num_threads=32 7X 0.276ms vs 0.037ms (1, 1, 224, 224) -> (128, 128) nearest-exact float32 num_threads=32 11X 0.305ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=32 8X 0.299ms vs 0.038ms ---------------------------------------------------------------------------------------------------- (1, 3, 320, 320) -> (256, 256) linear float32 num_threads=1 1.0X 1.2ms vs 1.3ms (1, 3, 320, 320) -> (256, 256) nearest float32 num_threads=1 2.0X 1.2ms vs 0.6ms (1, 3, 320, 320) -> (256, 256) nearest uint8 num_threads=1 1.7X 1.1ms vs 0.7ms (1, 3, 320, 320) -> (256, 256) nearest-exact float32 num_threads=1 2.1X 1.2ms vs 0.6ms (1, 3, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=1 1.9X 1.2ms vs 0.7ms (1, 1, 320, 320) -> (256, 256) linear float32 num_threads=1 8X 1.1ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) nearest float32 num_threads=1 15X 1.109ms vs 0.073ms (1, 1, 320, 320) -> (256, 256) nearest uint8 num_threads=1 10X 1.1ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) nearest-exact float32 num_threads=1 16X 1.192ms vs 0.074ms (1, 1, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=1 11X 1.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) linear float32 num_threads=2 1.7X 1.2ms vs 0.7ms (1, 3, 320, 320) -> (256, 256) nearest float32 num_threads=2 2.0X 0.6ms vs 0.3ms (1, 3, 320, 320) -> (256, 256) nearest uint8 num_threads=2 1.7X 0.6ms vs 0.3ms (1, 3, 320, 320) -> (256, 256) nearest-exact float32 num_threads=2 2.2X 0.7ms vs 0.3ms (1, 3, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=2 1.8X 0.6ms vs 0.3ms (1, 1, 320, 320) -> (256, 256) linear float32 num_threads=2 9X 1.0ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) nearest float32 num_threads=2 11X 0.598ms vs 0.052ms (1, 1, 320, 320) -> (256, 256) nearest uint8 num_threads=2 8X 0.556ms vs 0.072ms (1, 1, 320, 320) -> (256, 256) nearest-exact float32 num_threads=2 12X 0.649ms vs 0.053ms (1, 1, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=2 8X 0.598ms vs 0.073ms (1, 3, 320, 320) -> (256, 256) linear float32 num_threads=12 5X 1.2ms vs 0.3ms (1, 3, 320, 320) -> (256, 256) nearest float32 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest uint8 num_threads=12 1.3X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest-exact float32 num_threads=12 1.6X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=12 1.4X 0.2ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) linear float32 num_threads=12 9X 1.0ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) nearest float32 num_threads=12 12X 0.572ms vs 0.048ms (1, 1, 320, 320) -> (256, 256) nearest uint8 num_threads=12 8X 0.560ms vs 0.068ms (1, 1, 320, 320) -> (256, 256) nearest-exact float32 num_threads=12 13X 0.617ms vs 0.049ms (1, 1, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=12 9X 0.604ms vs 0.068ms (1, 3, 320, 320) -> (256, 256) linear float32 num_threads=32 5X 1.2ms vs 0.3ms (1, 3, 320, 320) -> (256, 256) nearest float32 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest uint8 num_threads=32 1.4X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest-exact float32 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=32 1.4X 0.2ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) linear float32 num_threads=32 13X 1.042ms vs 0.081ms (1, 1, 320, 320) -> (256, 256) nearest float32 num_threads=32 12X 0.586ms vs 0.050ms (1, 1, 320, 320) -> (256, 256) nearest uint8 num_threads=32 8X 0.562ms vs 0.069ms (1, 1, 320, 320) -> (256, 256) nearest-exact float32 num_threads=32 12X 0.621ms vs 0.051ms (1, 1, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=32 9X 0.609ms vs 0.070ms ---------------------------------------------------------------------------------------------------- (1, 3, 600, 400) -> (224, 224) linear float32 num_threads=1 1.0X 1.0ms vs 1.0ms (1, 3, 600, 400) -> (224, 224) nearest float32 num_threads=1 1.9X 0.9ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest uint8 num_threads=1 1.7X 0.9ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest-exact float32 num_threads=1 2.1X 1.0ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=1 1.8X 0.9ms vs 0.5ms (1, 1, 600, 400) -> (224, 224) linear float32 num_threads=1 7X 0.8ms vs 0.1ms (1, 1, 600, 400) -> (224, 224) nearest float32 num_threads=1 14X 0.852ms vs 0.061ms (1, 1, 600, 400) -> (224, 224) nearest uint8 num_threads=1 9X 0.828ms vs 0.087ms (1, 1, 600, 400) -> (224, 224) nearest-exact float32 num_threads=1 15X 0.922ms vs 0.061ms (1, 1, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=1 10X 0.897ms vs 0.087ms (1, 3, 600, 400) -> (224, 224) linear float32 num_threads=2 1.6X 0.9ms vs 0.6ms (1, 3, 600, 400) -> (224, 224) nearest float32 num_threads=2 1.9X 0.5ms vs 0.2ms (1, 3, 600, 400) -> (224, 224) nearest uint8 num_threads=2 1.7X 0.4ms vs 0.3ms (1, 3, 600, 400) -> (224, 224) nearest-exact float32 num_threads=2 2.1X 0.5ms vs 0.3ms (1, 3, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=2 1.8X 0.5ms vs 0.3ms (1, 1, 600, 400) -> (224, 224) linear float32 num_threads=2 10X 0.808ms vs 0.084ms (1, 1, 600, 400) -> (224, 224) nearest float32 num_threads=2 10X 0.462ms vs 0.046ms (1, 1, 600, 400) -> (224, 224) nearest uint8 num_threads=2 7X 0.429ms vs 0.062ms (1, 1, 600, 400) -> (224, 224) nearest-exact float32 num_threads=2 12X 0.504ms vs 0.044ms (1, 1, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=2 7X 0.461ms vs 0.063ms (1, 3, 600, 400) -> (224, 224) linear float32 num_threads=12 4X 1.0ms vs 0.2ms (1, 3, 600, 400) -> (224, 224) nearest float32 num_threads=12 1.7X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest-exact float32 num_threads=12 1.9X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=12 1.6X 0.2ms vs 0.1ms (1, 1, 600, 400) -> (224, 224) linear float32 num_threads=12 12X 0.820ms vs 0.067ms (1, 1, 600, 400) -> (224, 224) nearest float32 num_threads=12 11X 0.438ms vs 0.041ms (1, 1, 600, 400) -> (224, 224) nearest uint8 num_threads=12 8X 0.431ms vs 0.056ms (1, 1, 600, 400) -> (224, 224) nearest-exact float32 num_threads=12 12X 0.482ms vs 0.041ms (1, 1, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=12 8X 0.467ms vs 0.056ms (1, 3, 600, 400) -> (224, 224) linear float32 num_threads=32 4X 1.0ms vs 0.3ms (1, 3, 600, 400) -> (224, 224) nearest float32 num_threads=32 1.7X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest-exact float32 num_threads=32 1.8X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 1, 600, 400) -> (224, 224) linear float32 num_threads=32 12X 0.824ms vs 0.070ms (1, 1, 600, 400) -> (224, 224) nearest float32 num_threads=32 10X 0.443ms vs 0.044ms (1, 1, 600, 400) -> (224, 224) nearest uint8 num_threads=32 7X 0.438ms vs 0.059ms (1, 1, 600, 400) -> (224, 224) nearest-exact float32 num_threads=32 11X 0.479ms vs 0.045ms (1, 1, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=32 8X 0.470ms vs 0.059ms ---------------------------------------------------------------------------------------------------- (1, 3, 800, 800) -> (500, 500) linear float32 num_threads=1 1.0X 4.7ms vs 4.7ms (1, 3, 800, 800) -> (500, 500) nearest float32 num_threads=1 2.0X 4.4ms vs 2.2ms (1, 3, 800, 800) -> (500, 500) nearest uint8 num_threads=1 1.8X 4.3ms vs 2.5ms (1, 3, 800, 800) -> (500, 500) nearest-exact float32 num_threads=1 2.1X 4.7ms vs 2.2ms (1, 3, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=1 1.9X 4.6ms vs 2.5ms (1, 1, 800, 800) -> (500, 500) linear float32 num_threads=1 9X 4.0ms vs 0.4ms (1, 1, 800, 800) -> (500, 500) nearest float32 num_threads=1 17X 4.2ms vs 0.2ms (1, 1, 800, 800) -> (500, 500) nearest uint8 num_threads=1 11X 4.1ms vs 0.4ms (1, 1, 800, 800) -> (500, 500) nearest-exact float32 num_threads=1 19X 4.6ms vs 0.2ms (1, 1, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=1 12X 4.5ms vs 0.4ms (1, 3, 800, 800) -> (500, 500) linear float32 num_threads=2 1.7X 4.7ms vs 2.7ms (1, 3, 800, 800) -> (500, 500) nearest float32 num_threads=2 2.1X 2.4ms vs 1.1ms (1, 3, 800, 800) -> (500, 500) nearest uint8 num_threads=2 1.8X 2.2ms vs 1.3ms (1, 3, 800, 800) -> (500, 500) nearest-exact float32 num_threads=2 2.3X 2.6ms vs 1.1ms (1, 3, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=2 1.9X 2.3ms vs 1.3ms (1, 1, 800, 800) -> (500, 500) linear float32 num_threads=2 15X 4.0ms vs 0.3ms (1, 1, 800, 800) -> (500, 500) nearest float32 num_threads=2 16X 2.3ms vs 0.1ms (1, 1, 800, 800) -> (500, 500) nearest uint8 num_threads=2 9X 2.1ms vs 0.2ms (1, 1, 800, 800) -> (500, 500) nearest-exact float32 num_threads=2 17X 2.5ms vs 0.1ms (1, 1, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=2 10X 2.3ms vs 0.2ms (1, 3, 800, 800) -> (500, 500) linear float32 num_threads=12 10X 4.7ms vs 0.5ms (1, 3, 800, 800) -> (500, 500) nearest float32 num_threads=12 1.9X 0.4ms vs 0.2ms (1, 3, 800, 800) -> (500, 500) nearest uint8 num_threads=12 1.7X 0.4ms vs 0.2ms (1, 3, 800, 800) -> (500, 500) nearest-exact float32 num_threads=12 1.9X 0.4ms vs 0.2ms (1, 3, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=12 1.8X 0.4ms vs 0.2ms (1, 1, 800, 800) -> (500, 500) linear float32 num_threads=12 41X 3.969ms vs 0.096ms (1, 1, 800, 800) -> (500, 500) nearest float32 num_threads=12 11X 0.545ms vs 0.051ms (1, 1, 800, 800) -> (500, 500) nearest uint8 num_threads=12 8X 0.532ms vs 0.070ms (1, 1, 800, 800) -> (500, 500) nearest-exact float32 num_threads=12 11X 0.590ms vs 0.052ms (1, 1, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=12 8X 0.578ms vs 0.071ms (1, 3, 800, 800) -> (500, 500) linear float32 num_threads=32 17X 4.7ms vs 0.3ms (1, 3, 800, 800) -> (500, 500) nearest float32 num_threads=32 1.8X 0.2ms vs 0.1ms (1, 3, 800, 800) -> (500, 500) nearest uint8 num_threads=32 2.0X 0.3ms vs 0.1ms (1, 3, 800, 800) -> (500, 500) nearest-exact float32 num_threads=32 1.9X 0.2ms vs 0.1ms (1, 3, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 1, 800, 800) -> (500, 500) linear float32 num_threads=32 45X 4.028ms vs 0.090ms (1, 1, 800, 800) -> (500, 500) nearest float32 num_threads=32 10X 0.549ms vs 0.053ms (1, 1, 800, 800) -> (500, 500) nearest uint8 num_threads=32 7X 0.536ms vs 0.072ms (1, 1, 800, 800) -> (500, 500) nearest-exact float32 num_threads=32 11X 0.592ms vs 0.055ms (1, 1, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=32 8X 0.581ms vs 0.074ms ``` </details> Code: <details> I used this file which is adapted from https://github.com/pytorch/pytorch/blob/master/benchmarks/operator_benchmark/pt/interpolate_test.py ```py import operator_benchmark as op_bench import torch """Microbenchmarks for interpolate operator.""" class InterpolateBenchmark(op_bench.TorchBenchmarkBase): def init(self, input_size, output_size, channels_last=False, mode='linear', dtype=torch.float): input_image = torch.randint(0, 256, size=input_size, dtype=dtype, device='cpu', requires_grad=self.auto_set()) if channels_last: if input_image.ndim == 4: input_image = input_image.contiguous(memory_format=torch.channels_last) elif input_image.ndim == 5: input_image = input_image.contiguous(memory_format=torch.channels_last_3d) else: raise ValueError( f"Can not set channels_last to the input of {input_image.ndim} dims" ) align_corners = None if "nearest" in mode else False if mode == "linear": mode = { 3: 'linear', 4: 'bilinear', 5: 'trilinear', }[input_image.ndim] self.inputs = { "input_image": input_image, "output_size": output_size, "mode": mode, "align_corners": align_corners, } self.set_module_name("interpolate") def forward(self, input_image, output_size, mode, align_corners): return torch.nn.functional.interpolate(input_image, size=output_size, mode=mode, align_corners=align_corners) def make_config(): sizes = ( ((224, 224), (64, 64)), ((224, 224), (128, 128)), ((600, 400), (224, 224)), ((320, 320), (256, 256)), ((800, 800), (500, 500)), ) attrs = [] for (HW1, HW2) in sizes: attrs.append([(1, 3, *HW1), HW2]) # 3 channels attrs.append([(1, 1, *HW1), HW2]) # 1 channel attrs.append([(1, 3, *HW2), HW1]) # 3 channels attrs.append([(1, 1, *HW2), HW1]) # 1 channel config = op_bench.config_list( attr_names=["input_size", "output_size"], attrs=attrs, cross_product_configs={ 'channels_last': [True], 'mode': ["linear", "nearest", "nearest-exact"], 'dtype': [torch.float, torch.uint8] }, tags=["short"], ) # Need to remove instances with both torch.int and linear # Note: this is naaaasty def get_mode(l): for d in l: if "mode" in d: return d["mode"] def get_dtype(l): for d in l: if "dtype" in d: return d["dtype"] config = [l for l in config if not(get_mode(l) == "linear" and get_dtype(l) == torch.uint8)] return config config = make_config() op_bench.generate_pt_test(config, InterpolateBenchmark) if __name__ == "__main__": op_bench.benchmark_runner.main() ``` with ``` for num_threads in 1 2 12 32; do echo "num_threads=$num_threads" && python -m pt.my_interpolate_test --iterations 1000 --omp_num_threads $num_threads ; done > $out_file ``` and this very ugly helper ```py import re with open("main") as f: main = f.readlines() with open("new") as f: new = f.readlines() out = [] for main_line, new_line in zip(main, new): if main_line.startswith("num_threads="): num_threads = int(main_line.split("=")[-1]) if main_line.startswith("# Input"): deets = f"{main_line.strip()}, {num_threads=}" if main_line.startswith("Forward"): main_time = float(main_line.split()[-1]) new_time = float(new_line.split()[-1]) ratio = main_time / new_time fmt = ".1f" if ratio < 3 else ".0f" improv = f"{ratio:{fmt}}X" time_fmt = ",.3f" if new_time < 100 else ",.1f" deets = deets.strip().replace("# Input: ", "") deets = deets.replace(": ", "=") deets = deets.replace("input_size=", "") deets = deets.replace(", output_size=", " -> ") deets = deets.replace("dtype=torch.", "") deets = deets.replace("mode=", "") deets = deets.replace("channels_last=True, ", "") split = deets.split(",") size = ','.join(split[:-3]) mode, dtype, threads = split[-3:] deets = f"{size:<30} {mode:<15} {dtype:<10} {threads:<15}" l = f"{deets} {improv:<5} {main_time / 1000:{time_fmt}}ms vs {new_time / 1000:{time_fmt}}ms" out.append(l) def key(s): # s = ''.join(s.split()[1:]) # remove "N.nX" part num_threads = (int(re.findall(r"num_threads=(\d+)", s)[0]),) input_shape, output_shape = re.findall("\(.*?\)", s) input_shape = input_shape[1:-1] # remove parenthesis input_HW = tuple(int(x) for x in input_shape.split(",")[-2:]) input_C = (-int(input_shape.split(",")[1]),) output_HW = tuple(int(x) for x in output_shape[1:-1].split(",")) is_downsample = (output_HW[0] < input_HW[0],) if "linear" in s: mode = "linear" elif "nearest-exact" in s: mode = "nearest-exact" else: assert "nearest" in s mode = "nearest" mode = (mode,) return is_downsample + input_HW + output_HW + num_threads + input_C + mode for i, l in enumerate(sorted(out, key=key)): if i % 10 == 0 and i % 40 != 0: print() if i % 40 == 0: print("-" * 100) print(l) ``` </details> Closes #83840 When this is merged we should be able to remove some hack in vision as well pytorch/vision#6661 (CC @vfdev-5 @datumbox ) Pull Request resolved: #86361 Approved by: https://github.com/vfdev-5, https://github.com/datumbox, https://github.com/fmassa
…n 2D (#6661) Summary: * Hack to improve performance of resize op with nearest mode on 2D * Moved hack to prototype * Moved hack into proto and reused code from stable resize * updates * More updates Reviewed By: datumbox Differential Revision: D40138736 fbshipit-source-id: 8bee395a662814bd86f629a505e349dda398d412
… (#86361) Summary: This PR improves the speed of `interpolate()`: - on images and masks (`num_channels < 4`, `channels_last=True`) - for the following modes: linear (antialias=False), nearest (int and float), and nearest-exact (int and float) - for both upsampling and downsampling The actual speed-up ranges from 1.1X to 110X, but this depends on various factors like number of threads and of course input_size/output_size. In a typical torchvision ImageNet training job (where num_threads=1 because of DataLoader multi-processing), the following speed-ups should be expected (I ran much more benchmarks than this one, see below for more details): ``` (1, 3, 600, 400) -> (224, 224) linear float32 num_threads=1 1.0X 1.0ms vs 1.0ms (1, 3, 600, 400) -> (224, 224) nearest float32 num_threads=1 1.9X 0.9ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest uint8 num_threads=1 1.7X 0.9ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest-exact float32 num_threads=1 2.1X 1.0ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=1 1.8X 0.9ms vs 0.5ms (1, 1, 600, 400) -> (224, 224) linear float32 num_threads=1 7X 0.8ms vs 0.1ms (1, 1, 600, 400) -> (224, 224) nearest float32 num_threads=1 14X 0.852ms vs 0.061ms (1, 1, 600, 400) -> (224, 224) nearest uint8 num_threads=1 9X 0.828ms vs 0.087ms (1, 1, 600, 400) -> (224, 224) nearest-exact float32 num_threads=1 15X 0.922ms vs 0.061ms (1, 1, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=1 10X 0.897ms vs 0.087ms ``` An immediate follow-up to this PR would be to do the same changes for the 3D kernels. Thanks a ton fmassa for the help! ### Speedup benchmarks: Results: <details> ``` ---------------------------------------------------------------------------------------------------- (1, 3, 64, 64) -> (224, 224) linear float32 num_threads=1 0.9X 0.9ms vs 1.1ms (1, 3, 64, 64) -> (224, 224) nearest float32 num_threads=1 1.6X 0.9ms vs 0.5ms (1, 3, 64, 64) -> (224, 224) nearest uint8 num_threads=1 1.7X 0.9ms vs 0.5ms (1, 3, 64, 64) -> (224, 224) nearest-exact float32 num_threads=1 1.7X 1.0ms vs 0.5ms (1, 3, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=1 1.9X 0.9ms vs 0.5ms (1, 1, 64, 64) -> (224, 224) linear float32 num_threads=1 8X 0.806ms vs 0.097ms (1, 1, 64, 64) -> (224, 224) nearest float32 num_threads=1 15X 0.848ms vs 0.056ms (1, 1, 64, 64) -> (224, 224) nearest uint8 num_threads=1 10X 0.828ms vs 0.084ms (1, 1, 64, 64) -> (224, 224) nearest-exact float32 num_threads=1 16X 0.914ms vs 0.057ms (1, 1, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=1 10X 0.900ms vs 0.086ms (1, 3, 64, 64) -> (224, 224) linear float32 num_threads=2 1.6X 1.1ms vs 0.7ms (1, 3, 64, 64) -> (224, 224) nearest float32 num_threads=2 1.6X 0.6ms vs 0.4ms (1, 3, 64, 64) -> (224, 224) nearest uint8 num_threads=2 1.7X 0.4ms vs 0.3ms (1, 3, 64, 64) -> (224, 224) nearest-exact float32 num_threads=2 1.7X 0.6ms vs 0.4ms (1, 3, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=2 1.7X 0.5ms vs 0.3ms (1, 1, 64, 64) -> (224, 224) linear float32 num_threads=2 9X 0.800ms vs 0.088ms (1, 1, 64, 64) -> (224, 224) nearest float32 num_threads=2 11X 0.459ms vs 0.043ms (1, 1, 64, 64) -> (224, 224) nearest uint8 num_threads=2 7X 0.424ms vs 0.064ms (1, 1, 64, 64) -> (224, 224) nearest-exact float32 num_threads=2 12X 0.503ms vs 0.043ms (1, 1, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=2 8X 0.461ms vs 0.059ms (1, 3, 64, 64) -> (224, 224) linear float32 num_threads=12 3X 1.1ms vs 0.3ms (1, 3, 64, 64) -> (224, 224) nearest float32 num_threads=12 1.6X 0.3ms vs 0.2ms (1, 3, 64, 64) -> (224, 224) nearest uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 64, 64) -> (224, 224) nearest-exact float32 num_threads=12 1.5X 0.3ms vs 0.2ms (1, 3, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 1, 64, 64) -> (224, 224) linear float32 num_threads=12 5X 0.8ms vs 0.2ms (1, 1, 64, 64) -> (224, 224) nearest float32 num_threads=12 10X 0.445ms vs 0.047ms (1, 1, 64, 64) -> (224, 224) nearest uint8 num_threads=12 7X 0.432ms vs 0.062ms (1, 1, 64, 64) -> (224, 224) nearest-exact float32 num_threads=12 10X 0.478ms vs 0.046ms (1, 1, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=12 7X 0.470ms vs 0.063ms (1, 3, 64, 64) -> (224, 224) linear float32 num_threads=32 3X 1.1ms vs 0.4ms (1, 3, 64, 64) -> (224, 224) nearest float32 num_threads=32 1.8X 0.3ms vs 0.2ms (1, 3, 64, 64) -> (224, 224) nearest uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 64, 64) -> (224, 224) nearest-exact float32 num_threads=32 1.4X 0.3ms vs 0.2ms (1, 3, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 1, 64, 64) -> (224, 224) linear float32 num_threads=32 11X 0.815ms vs 0.074ms (1, 1, 64, 64) -> (224, 224) nearest float32 num_threads=32 10X 0.443ms vs 0.045ms (1, 1, 64, 64) -> (224, 224) nearest uint8 num_threads=32 7X 0.436ms vs 0.061ms (1, 1, 64, 64) -> (224, 224) nearest-exact float32 num_threads=32 10X 0.478ms vs 0.046ms (1, 1, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=32 8X 0.470ms vs 0.061ms ---------------------------------------------------------------------------------------------------- (1, 3, 128, 128) -> (224, 224) linear float32 num_threads=1 0.9X 0.9ms vs 1.1ms (1, 3, 128, 128) -> (224, 224) nearest float32 num_threads=1 1.5X 0.9ms vs 0.6ms (1, 3, 128, 128) -> (224, 224) nearest uint8 num_threads=1 1.7X 0.9ms vs 0.5ms (1, 3, 128, 128) -> (224, 224) nearest-exact float32 num_threads=1 1.6X 1.0ms vs 0.6ms (1, 3, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=1 1.8X 0.9ms vs 0.5ms (1, 1, 128, 128) -> (224, 224) linear float32 num_threads=1 8X 0.808ms vs 0.099ms (1, 1, 128, 128) -> (224, 224) nearest float32 num_threads=1 15X 0.848ms vs 0.058ms (1, 1, 128, 128) -> (224, 224) nearest uint8 num_threads=1 9X 0.820ms vs 0.087ms (1, 1, 128, 128) -> (224, 224) nearest-exact float32 num_threads=1 16X 0.909ms vs 0.059ms (1, 1, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=1 10X 0.898ms vs 0.088ms (1, 3, 128, 128) -> (224, 224) linear float32 num_threads=2 1.4X 0.9ms vs 0.7ms (1, 3, 128, 128) -> (224, 224) nearest float32 num_threads=2 1.5X 0.5ms vs 0.3ms (1, 3, 128, 128) -> (224, 224) nearest uint8 num_threads=2 1.7X 0.4ms vs 0.3ms (1, 3, 128, 128) -> (224, 224) nearest-exact float32 num_threads=2 1.5X 0.5ms vs 0.4ms (1, 3, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=2 1.8X 0.5ms vs 0.3ms (1, 1, 128, 128) -> (224, 224) linear float32 num_threads=2 9X 0.799ms vs 0.090ms (1, 1, 128, 128) -> (224, 224) nearest float32 num_threads=2 10X 0.459ms vs 0.045ms (1, 1, 128, 128) -> (224, 224) nearest uint8 num_threads=2 7X 0.427ms vs 0.059ms (1, 1, 128, 128) -> (224, 224) nearest-exact float32 num_threads=2 11X 0.501ms vs 0.044ms (1, 1, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=2 8X 0.460ms vs 0.060ms (1, 3, 128, 128) -> (224, 224) linear float32 num_threads=12 2.9X 1.0ms vs 0.3ms (1, 3, 128, 128) -> (224, 224) nearest float32 num_threads=12 1.2X 0.2ms vs 0.2ms (1, 3, 128, 128) -> (224, 224) nearest uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 128, 128) -> (224, 224) nearest-exact float32 num_threads=12 1.1X 0.2ms vs 0.2ms (1, 3, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=12 1.6X 0.2ms vs 0.1ms (1, 1, 128, 128) -> (224, 224) linear float32 num_threads=12 12X 0.809ms vs 0.068ms (1, 1, 128, 128) -> (224, 224) nearest float32 num_threads=12 11X 0.438ms vs 0.041ms (1, 1, 128, 128) -> (224, 224) nearest uint8 num_threads=12 8X 0.432ms vs 0.055ms (1, 1, 128, 128) -> (224, 224) nearest-exact float32 num_threads=12 12X 0.480ms vs 0.041ms (1, 1, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=12 8X 0.464ms vs 0.056ms (1, 3, 128, 128) -> (224, 224) linear float32 num_threads=32 3X 1.1ms vs 0.3ms (1, 3, 128, 128) -> (224, 224) nearest float32 num_threads=32 1.3X 0.3ms vs 0.2ms (1, 3, 128, 128) -> (224, 224) nearest uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 128, 128) -> (224, 224) nearest-exact float32 num_threads=32 1.4X 0.3ms vs 0.2ms (1, 3, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 1, 128, 128) -> (224, 224) linear float32 num_threads=32 11X 0.813ms vs 0.075ms (1, 1, 128, 128) -> (224, 224) nearest float32 num_threads=32 10X 0.443ms vs 0.046ms (1, 1, 128, 128) -> (224, 224) nearest uint8 num_threads=32 7X 0.433ms vs 0.061ms (1, 1, 128, 128) -> (224, 224) nearest-exact float32 num_threads=32 10X 0.478ms vs 0.046ms (1, 1, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=32 8X 0.470ms vs 0.062ms ---------------------------------------------------------------------------------------------------- (1, 3, 224, 224) -> (600, 400) linear float32 num_threads=1 0.9X 4.5ms vs 5.2ms (1, 3, 224, 224) -> (600, 400) nearest float32 num_threads=1 1.5X 4.2ms vs 2.8ms (1, 3, 224, 224) -> (600, 400) nearest uint8 num_threads=1 1.8X 4.1ms vs 2.3ms (1, 3, 224, 224) -> (600, 400) nearest-exact float32 num_threads=1 1.6X 4.5ms vs 2.8ms (1, 3, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=1 1.9X 4.4ms vs 2.3ms (1, 1, 224, 224) -> (600, 400) linear float32 num_threads=1 9X 3.8ms vs 0.4ms (1, 1, 224, 224) -> (600, 400) nearest float32 num_threads=1 17X 4.0ms vs 0.2ms (1, 1, 224, 224) -> (600, 400) nearest uint8 num_threads=1 11X 3.9ms vs 0.4ms (1, 1, 224, 224) -> (600, 400) nearest-exact float32 num_threads=1 19X 4.4ms vs 0.2ms (1, 1, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=1 12X 4.3ms vs 0.4ms (1, 3, 224, 224) -> (600, 400) linear float32 num_threads=2 1.5X 4.5ms vs 3.1ms (1, 3, 224, 224) -> (600, 400) nearest float32 num_threads=2 1.4X 2.3ms vs 1.6ms (1, 3, 224, 224) -> (600, 400) nearest uint8 num_threads=2 1.7X 2.1ms vs 1.2ms (1, 3, 224, 224) -> (600, 400) nearest-exact float32 num_threads=2 1.6X 2.5ms vs 1.6ms (1, 3, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=2 1.8X 2.2ms vs 1.2ms (1, 1, 224, 224) -> (600, 400) linear float32 num_threads=2 15X 3.8ms vs 0.3ms (1, 1, 224, 224) -> (600, 400) nearest float32 num_threads=2 15X 2.2ms vs 0.1ms (1, 1, 224, 224) -> (600, 400) nearest uint8 num_threads=2 7X 2.0ms vs 0.3ms (1, 1, 224, 224) -> (600, 400) nearest-exact float32 num_threads=2 16X 2.4ms vs 0.1ms (1, 1, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=2 8X 2.2ms vs 0.3ms (1, 3, 224, 224) -> (600, 400) linear float32 num_threads=12 8X 5.2ms vs 0.7ms (1, 3, 224, 224) -> (600, 400) nearest float32 num_threads=12 1.3X 0.6ms vs 0.4ms (1, 3, 224, 224) -> (600, 400) nearest uint8 num_threads=12 1.7X 0.4ms vs 0.2ms (1, 3, 224, 224) -> (600, 400) nearest-exact float32 num_threads=12 1.4X 0.6ms vs 0.4ms (1, 3, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=12 1.8X 0.4ms vs 0.2ms (1, 1, 224, 224) -> (600, 400) linear float32 num_threads=12 36X 3.9ms vs 0.1ms (1, 1, 224, 224) -> (600, 400) nearest float32 num_threads=12 10X 0.526ms vs 0.051ms (1, 1, 224, 224) -> (600, 400) nearest uint8 num_threads=12 7X 0.514ms vs 0.069ms (1, 1, 224, 224) -> (600, 400) nearest-exact float32 num_threads=12 11X 0.569ms vs 0.052ms (1, 1, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=12 8X 0.557ms vs 0.070ms (1, 3, 224, 224) -> (600, 400) linear float32 num_threads=32 9X 4.5ms vs 0.5ms (1, 3, 224, 224) -> (600, 400) nearest float32 num_threads=32 0.5X 0.2ms vs 0.5ms (1, 3, 224, 224) -> (600, 400) nearest uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 224, 224) -> (600, 400) nearest-exact float32 num_threads=32 1.0X 0.5ms vs 0.5ms (1, 3, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 1, 224, 224) -> (600, 400) linear float32 num_threads=32 44X 3.864ms vs 0.087ms (1, 1, 224, 224) -> (600, 400) nearest float32 num_threads=32 10X 0.527ms vs 0.053ms (1, 1, 224, 224) -> (600, 400) nearest uint8 num_threads=32 7X 0.516ms vs 0.070ms (1, 1, 224, 224) -> (600, 400) nearest-exact float32 num_threads=32 10X 0.567ms vs 0.055ms (1, 1, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=32 8X 0.558ms vs 0.072ms ---------------------------------------------------------------------------------------------------- (1, 3, 256, 256) -> (320, 320) linear float32 num_threads=1 1.0X 1.9ms vs 1.9ms (1, 3, 256, 256) -> (320, 320) nearest float32 num_threads=1 2.0X 1.8ms vs 0.9ms (1, 3, 256, 256) -> (320, 320) nearest uint8 num_threads=1 1.7X 1.8ms vs 1.0ms (1, 3, 256, 256) -> (320, 320) nearest-exact float32 num_threads=1 2.1X 1.9ms vs 0.9ms (1, 3, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=1 1.9X 1.9ms vs 1.0ms (1, 1, 256, 256) -> (320, 320) linear float32 num_threads=1 9X 1.6ms vs 0.2ms (1, 1, 256, 256) -> (320, 320) nearest float32 num_threads=1 16X 1.7ms vs 0.1ms (1, 1, 256, 256) -> (320, 320) nearest uint8 num_threads=1 10X 1.7ms vs 0.2ms (1, 1, 256, 256) -> (320, 320) nearest-exact float32 num_threads=1 17X 1.9ms vs 0.1ms (1, 1, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=1 11X 1.8ms vs 0.2ms (1, 3, 256, 256) -> (320, 320) linear float32 num_threads=2 1.7X 1.9ms vs 1.1ms (1, 3, 256, 256) -> (320, 320) nearest float32 num_threads=2 2.0X 1.0ms vs 0.5ms (1, 3, 256, 256) -> (320, 320) nearest uint8 num_threads=2 1.7X 0.9ms vs 0.5ms (1, 3, 256, 256) -> (320, 320) nearest-exact float32 num_threads=2 2.3X 1.1ms vs 0.5ms (1, 3, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=2 1.8X 1.0ms vs 0.5ms (1, 1, 256, 256) -> (320, 320) linear float32 num_threads=2 8X 1.6ms vs 0.2ms (1, 1, 256, 256) -> (320, 320) nearest float32 num_threads=2 14X 0.931ms vs 0.067ms (1, 1, 256, 256) -> (320, 320) nearest uint8 num_threads=2 7X 0.9ms vs 0.1ms (1, 1, 256, 256) -> (320, 320) nearest-exact float32 num_threads=2 15X 1.016ms vs 0.069ms (1, 1, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=2 9X 0.9ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) linear float32 num_threads=12 8X 1.9ms vs 0.3ms (1, 3, 256, 256) -> (320, 320) nearest float32 num_threads=12 1.7X 0.2ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) nearest uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) nearest-exact float32 num_threads=12 1.9X 0.2ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=12 1.6X 0.2ms vs 0.1ms (1, 1, 256, 256) -> (320, 320) linear float32 num_threads=12 20X 1.630ms vs 0.081ms (1, 1, 256, 256) -> (320, 320) nearest float32 num_threads=12 10X 0.457ms vs 0.044ms (1, 1, 256, 256) -> (320, 320) nearest uint8 num_threads=12 7X 0.439ms vs 0.060ms (1, 1, 256, 256) -> (320, 320) nearest-exact float32 num_threads=12 11X 0.485ms vs 0.045ms (1, 1, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=12 8X 0.474ms vs 0.061ms (1, 3, 256, 256) -> (320, 320) linear float32 num_threads=32 8X 1.9ms vs 0.3ms (1, 3, 256, 256) -> (320, 320) nearest float32 num_threads=32 2.0X 0.2ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) nearest uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) nearest-exact float32 num_threads=32 1.4X 0.2ms vs 0.2ms (1, 3, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=32 1.4X 0.2ms vs 0.1ms (1, 1, 256, 256) -> (320, 320) linear float32 num_threads=32 21X 1.628ms vs 0.078ms (1, 1, 256, 256) -> (320, 320) nearest float32 num_threads=32 9X 0.453ms vs 0.048ms (1, 1, 256, 256) -> (320, 320) nearest uint8 num_threads=32 7X 0.445ms vs 0.063ms (1, 1, 256, 256) -> (320, 320) nearest-exact float32 num_threads=32 11X 0.535ms vs 0.048ms (1, 1, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=32 8X 0.502ms vs 0.063ms ---------------------------------------------------------------------------------------------------- (1, 3, 500, 500) -> (800, 800) linear float32 num_threads=1 1.0X 13.8ms vs 14.0ms (1, 3, 500, 500) -> (800, 800) nearest float32 num_threads=1 1.8X 13.1ms vs 7.4ms (1, 3, 500, 500) -> (800, 800) nearest uint8 num_threads=1 1.8X 11.1ms vs 6.1ms (1, 3, 500, 500) -> (800, 800) nearest-exact float32 num_threads=1 1.9X 13.9ms vs 7.4ms (1, 3, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=1 1.9X 11.8ms vs 6.1ms (1, 1, 500, 500) -> (800, 800) linear float32 num_threads=1 10X 10.2ms vs 1.1ms (1, 1, 500, 500) -> (800, 800) nearest float32 num_threads=1 19X 10.8ms vs 0.6ms (1, 1, 500, 500) -> (800, 800) nearest uint8 num_threads=1 11X 10.4ms vs 0.9ms (1, 1, 500, 500) -> (800, 800) nearest-exact float32 num_threads=1 20X 11.6ms vs 0.6ms (1, 1, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=1 12X 11.4ms vs 0.9ms (1, 3, 500, 500) -> (800, 800) linear float32 num_threads=2 1.8X 13.7ms vs 7.7ms (1, 3, 500, 500) -> (800, 800) nearest float32 num_threads=2 2.6X 7.3ms vs 2.8ms (1, 3, 500, 500) -> (800, 800) nearest uint8 num_threads=2 1.8X 5.6ms vs 3.1ms (1, 3, 500, 500) -> (800, 800) nearest-exact float32 num_threads=2 1.9X 7.9ms vs 4.1ms (1, 3, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=2 1.9X 6.0ms vs 3.1ms (1, 1, 500, 500) -> (800, 800) linear float32 num_threads=2 18X 10.1ms vs 0.6ms (1, 1, 500, 500) -> (800, 800) nearest float32 num_threads=2 19X 5.8ms vs 0.3ms (1, 1, 500, 500) -> (800, 800) nearest uint8 num_threads=2 10X 5.3ms vs 0.5ms (1, 1, 500, 500) -> (800, 800) nearest-exact float32 num_threads=2 20X 6.3ms vs 0.3ms (1, 1, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=2 11X 5.7ms vs 0.5ms (1, 3, 500, 500) -> (800, 800) linear float32 num_threads=12 8X 13.8ms vs 1.6ms (1, 3, 500, 500) -> (800, 800) nearest float32 num_threads=12 2.9X 1.5ms vs 0.5ms (1, 3, 500, 500) -> (800, 800) nearest uint8 num_threads=12 1.7X 1.0ms vs 0.5ms (1, 3, 500, 500) -> (800, 800) nearest-exact float32 num_threads=12 1.5X 1.5ms vs 1.0ms (1, 3, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=12 1.8X 1.0ms vs 0.6ms (1, 1, 500, 500) -> (800, 800) linear float32 num_threads=12 80X 10.1ms vs 0.1ms (1, 1, 500, 500) -> (800, 800) nearest float32 num_threads=12 13X 0.928ms vs 0.072ms (1, 1, 500, 500) -> (800, 800) nearest uint8 num_threads=12 8X 0.9ms vs 0.1ms (1, 1, 500, 500) -> (800, 800) nearest-exact float32 num_threads=12 13X 1.001ms vs 0.074ms (1, 1, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=12 9X 1.0ms vs 0.1ms (1, 3, 500, 500) -> (800, 800) linear float32 num_threads=32 18X 14.0ms vs 0.8ms (1, 3, 500, 500) -> (800, 800) nearest float32 num_threads=32 1.9X 1.0ms vs 0.6ms (1, 3, 500, 500) -> (800, 800) nearest uint8 num_threads=32 2.9X 0.7ms vs 0.2ms (1, 3, 500, 500) -> (800, 800) nearest-exact float32 num_threads=32 1.7X 0.9ms vs 0.6ms (1, 3, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=32 1.8X 0.4ms vs 0.2ms (1, 1, 500, 500) -> (800, 800) linear float32 num_threads=32 111X 10.254ms vs 0.092ms (1, 1, 500, 500) -> (800, 800) nearest float32 num_threads=32 14X 0.784ms vs 0.056ms (1, 1, 500, 500) -> (800, 800) nearest uint8 num_threads=32 7X 0.551ms vs 0.075ms (1, 1, 500, 500) -> (800, 800) nearest-exact float32 num_threads=32 11X 0.607ms vs 0.057ms (1, 1, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=32 8X 0.596ms vs 0.076ms ---------------------------------------------------------------------------------------------------- (1, 3, 224, 224) -> (64, 64) linear float32 num_threads=1 1.0X 0.084ms vs 0.084ms (1, 3, 224, 224) -> (64, 64) nearest float32 num_threads=1 1.0X 0.077ms vs 0.078ms (1, 3, 224, 224) -> (64, 64) nearest uint8 num_threads=1 1.0X 0.076ms vs 0.076ms (1, 3, 224, 224) -> (64, 64) nearest-exact float32 num_threads=1 1.0X 0.083ms vs 0.083ms (1, 3, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=1 1.0X 0.081ms vs 0.082ms (1, 1, 224, 224) -> (64, 64) linear float32 num_threads=1 1.0X 0.071ms vs 0.071ms (1, 1, 224, 224) -> (64, 64) nearest float32 num_threads=1 1.0X 0.074ms vs 0.074ms (1, 1, 224, 224) -> (64, 64) nearest uint8 num_threads=1 1.0X 0.072ms vs 0.072ms (1, 1, 224, 224) -> (64, 64) nearest-exact float32 num_threads=1 1.0X 0.080ms vs 0.080ms (1, 1, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=1 0.9X 0.078ms vs 0.084ms (1, 3, 224, 224) -> (64, 64) linear float32 num_threads=2 1.0X 0.083ms vs 0.084ms (1, 3, 224, 224) -> (64, 64) nearest float32 num_threads=2 1.0X 0.076ms vs 0.077ms (1, 3, 224, 224) -> (64, 64) nearest uint8 num_threads=2 1.0X 0.075ms vs 0.074ms (1, 3, 224, 224) -> (64, 64) nearest-exact float32 num_threads=2 1.0X 0.082ms vs 0.083ms (1, 3, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=2 1.0X 0.080ms vs 0.083ms (1, 1, 224, 224) -> (64, 64) linear float32 num_threads=2 1.0X 0.070ms vs 0.071ms (1, 1, 224, 224) -> (64, 64) nearest float32 num_threads=2 1.0X 0.073ms vs 0.075ms (1, 1, 224, 224) -> (64, 64) nearest uint8 num_threads=2 1.0X 0.071ms vs 0.072ms (1, 1, 224, 224) -> (64, 64) nearest-exact float32 num_threads=2 1.0X 0.079ms vs 0.080ms (1, 1, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=2 1.0X 0.077ms vs 0.079ms (1, 3, 224, 224) -> (64, 64) linear float32 num_threads=12 1.0X 0.083ms vs 0.084ms (1, 3, 224, 224) -> (64, 64) nearest float32 num_threads=12 1.0X 0.080ms vs 0.078ms (1, 3, 224, 224) -> (64, 64) nearest uint8 num_threads=12 1.0X 0.077ms vs 0.075ms (1, 3, 224, 224) -> (64, 64) nearest-exact float32 num_threads=12 1.0X 0.083ms vs 0.083ms (1, 3, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=12 1.0X 0.083ms vs 0.082ms (1, 1, 224, 224) -> (64, 64) linear float32 num_threads=12 1.0X 0.071ms vs 0.071ms (1, 1, 224, 224) -> (64, 64) nearest float32 num_threads=12 1.0X 0.076ms vs 0.074ms (1, 1, 224, 224) -> (64, 64) nearest uint8 num_threads=12 1.0X 0.073ms vs 0.071ms (1, 1, 224, 224) -> (64, 64) nearest-exact float32 num_threads=12 1.0X 0.080ms vs 0.080ms (1, 1, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=12 1.0X 0.080ms vs 0.078ms (1, 3, 224, 224) -> (64, 64) linear float32 num_threads=32 1.0X 0.084ms vs 0.084ms (1, 3, 224, 224) -> (64, 64) nearest float32 num_threads=32 1.0X 0.078ms vs 0.077ms (1, 3, 224, 224) -> (64, 64) nearest uint8 num_threads=32 1.0X 0.076ms vs 0.076ms (1, 3, 224, 224) -> (64, 64) nearest-exact float32 num_threads=32 1.0X 0.083ms vs 0.083ms (1, 3, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=32 1.0X 0.081ms vs 0.082ms (1, 1, 224, 224) -> (64, 64) linear float32 num_threads=32 1.0X 0.072ms vs 0.072ms (1, 1, 224, 224) -> (64, 64) nearest float32 num_threads=32 1.0X 0.074ms vs 0.075ms (1, 1, 224, 224) -> (64, 64) nearest uint8 num_threads=32 1.0X 0.072ms vs 0.072ms (1, 1, 224, 224) -> (64, 64) nearest-exact float32 num_threads=32 1.0X 0.077ms vs 0.080ms (1, 1, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=32 1.0X 0.076ms vs 0.079ms ---------------------------------------------------------------------------------------------------- (1, 3, 224, 224) -> (128, 128) linear float32 num_threads=1 1.0X 0.3ms vs 0.3ms (1, 3, 224, 224) -> (128, 128) nearest float32 num_threads=1 1.8X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest uint8 num_threads=1 1.6X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest-exact float32 num_threads=1 2.0X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=1 1.7X 0.3ms vs 0.2ms (1, 1, 224, 224) -> (128, 128) linear float32 num_threads=1 6X 0.265ms vs 0.044ms (1, 1, 224, 224) -> (128, 128) nearest float32 num_threads=1 10X 0.280ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest uint8 num_threads=1 7X 0.273ms vs 0.037ms (1, 1, 224, 224) -> (128, 128) nearest-exact float32 num_threads=1 11X 0.303ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=1 8X 0.297ms vs 0.038ms (1, 3, 224, 224) -> (128, 128) linear float32 num_threads=2 1.5X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest float32 num_threads=2 1.8X 0.163ms vs 0.093ms (1, 3, 224, 224) -> (128, 128) nearest uint8 num_threads=2 1.5X 0.2ms vs 0.1ms (1, 3, 224, 224) -> (128, 128) nearest-exact float32 num_threads=2 1.9X 0.180ms vs 0.096ms (1, 3, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=2 1.6X 0.2ms vs 0.1ms (1, 1, 224, 224) -> (128, 128) linear float32 num_threads=2 6X 0.264ms vs 0.044ms (1, 1, 224, 224) -> (128, 128) nearest float32 num_threads=2 10X 0.278ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest uint8 num_threads=2 7X 0.270ms vs 0.037ms (1, 1, 224, 224) -> (128, 128) nearest-exact float32 num_threads=2 11X 0.298ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=2 8X 0.293ms vs 0.037ms (1, 3, 224, 224) -> (128, 128) linear float32 num_threads=12 1.5X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest float32 num_threads=12 1.7X 0.158ms vs 0.095ms (1, 3, 224, 224) -> (128, 128) nearest uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 224, 224) -> (128, 128) nearest-exact float32 num_threads=12 1.7X 0.170ms vs 0.100ms (1, 3, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=12 1.6X 0.2ms vs 0.1ms (1, 1, 224, 224) -> (128, 128) linear float32 num_threads=12 6X 0.269ms vs 0.043ms (1, 1, 224, 224) -> (128, 128) nearest float32 num_threads=12 11X 0.291ms vs 0.027ms (1, 1, 224, 224) -> (128, 128) nearest uint8 num_threads=12 8X 0.281ms vs 0.037ms (1, 1, 224, 224) -> (128, 128) nearest-exact float32 num_threads=12 11X 0.305ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=12 8X 0.306ms vs 0.038ms (1, 3, 224, 224) -> (128, 128) linear float32 num_threads=32 1.5X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest float32 num_threads=32 1.6X 0.160ms vs 0.098ms (1, 3, 224, 224) -> (128, 128) nearest uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 224, 224) -> (128, 128) nearest-exact float32 num_threads=32 1.7X 0.171ms vs 0.099ms (1, 3, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 1, 224, 224) -> (128, 128) linear float32 num_threads=32 6X 0.269ms vs 0.044ms (1, 1, 224, 224) -> (128, 128) nearest float32 num_threads=32 10X 0.282ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest uint8 num_threads=32 7X 0.276ms vs 0.037ms (1, 1, 224, 224) -> (128, 128) nearest-exact float32 num_threads=32 11X 0.305ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=32 8X 0.299ms vs 0.038ms ---------------------------------------------------------------------------------------------------- (1, 3, 320, 320) -> (256, 256) linear float32 num_threads=1 1.0X 1.2ms vs 1.3ms (1, 3, 320, 320) -> (256, 256) nearest float32 num_threads=1 2.0X 1.2ms vs 0.6ms (1, 3, 320, 320) -> (256, 256) nearest uint8 num_threads=1 1.7X 1.1ms vs 0.7ms (1, 3, 320, 320) -> (256, 256) nearest-exact float32 num_threads=1 2.1X 1.2ms vs 0.6ms (1, 3, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=1 1.9X 1.2ms vs 0.7ms (1, 1, 320, 320) -> (256, 256) linear float32 num_threads=1 8X 1.1ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) nearest float32 num_threads=1 15X 1.109ms vs 0.073ms (1, 1, 320, 320) -> (256, 256) nearest uint8 num_threads=1 10X 1.1ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) nearest-exact float32 num_threads=1 16X 1.192ms vs 0.074ms (1, 1, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=1 11X 1.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) linear float32 num_threads=2 1.7X 1.2ms vs 0.7ms (1, 3, 320, 320) -> (256, 256) nearest float32 num_threads=2 2.0X 0.6ms vs 0.3ms (1, 3, 320, 320) -> (256, 256) nearest uint8 num_threads=2 1.7X 0.6ms vs 0.3ms (1, 3, 320, 320) -> (256, 256) nearest-exact float32 num_threads=2 2.2X 0.7ms vs 0.3ms (1, 3, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=2 1.8X 0.6ms vs 0.3ms (1, 1, 320, 320) -> (256, 256) linear float32 num_threads=2 9X 1.0ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) nearest float32 num_threads=2 11X 0.598ms vs 0.052ms (1, 1, 320, 320) -> (256, 256) nearest uint8 num_threads=2 8X 0.556ms vs 0.072ms (1, 1, 320, 320) -> (256, 256) nearest-exact float32 num_threads=2 12X 0.649ms vs 0.053ms (1, 1, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=2 8X 0.598ms vs 0.073ms (1, 3, 320, 320) -> (256, 256) linear float32 num_threads=12 5X 1.2ms vs 0.3ms (1, 3, 320, 320) -> (256, 256) nearest float32 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest uint8 num_threads=12 1.3X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest-exact float32 num_threads=12 1.6X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=12 1.4X 0.2ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) linear float32 num_threads=12 9X 1.0ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) nearest float32 num_threads=12 12X 0.572ms vs 0.048ms (1, 1, 320, 320) -> (256, 256) nearest uint8 num_threads=12 8X 0.560ms vs 0.068ms (1, 1, 320, 320) -> (256, 256) nearest-exact float32 num_threads=12 13X 0.617ms vs 0.049ms (1, 1, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=12 9X 0.604ms vs 0.068ms (1, 3, 320, 320) -> (256, 256) linear float32 num_threads=32 5X 1.2ms vs 0.3ms (1, 3, 320, 320) -> (256, 256) nearest float32 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest uint8 num_threads=32 1.4X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest-exact float32 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=32 1.4X 0.2ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) linear float32 num_threads=32 13X 1.042ms vs 0.081ms (1, 1, 320, 320) -> (256, 256) nearest float32 num_threads=32 12X 0.586ms vs 0.050ms (1, 1, 320, 320) -> (256, 256) nearest uint8 num_threads=32 8X 0.562ms vs 0.069ms (1, 1, 320, 320) -> (256, 256) nearest-exact float32 num_threads=32 12X 0.621ms vs 0.051ms (1, 1, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=32 9X 0.609ms vs 0.070ms ---------------------------------------------------------------------------------------------------- (1, 3, 600, 400) -> (224, 224) linear float32 num_threads=1 1.0X 1.0ms vs 1.0ms (1, 3, 600, 400) -> (224, 224) nearest float32 num_threads=1 1.9X 0.9ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest uint8 num_threads=1 1.7X 0.9ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest-exact float32 num_threads=1 2.1X 1.0ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=1 1.8X 0.9ms vs 0.5ms (1, 1, 600, 400) -> (224, 224) linear float32 num_threads=1 7X 0.8ms vs 0.1ms (1, 1, 600, 400) -> (224, 224) nearest float32 num_threads=1 14X 0.852ms vs 0.061ms (1, 1, 600, 400) -> (224, 224) nearest uint8 num_threads=1 9X 0.828ms vs 0.087ms (1, 1, 600, 400) -> (224, 224) nearest-exact float32 num_threads=1 15X 0.922ms vs 0.061ms (1, 1, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=1 10X 0.897ms vs 0.087ms (1, 3, 600, 400) -> (224, 224) linear float32 num_threads=2 1.6X 0.9ms vs 0.6ms (1, 3, 600, 400) -> (224, 224) nearest float32 num_threads=2 1.9X 0.5ms vs 0.2ms (1, 3, 600, 400) -> (224, 224) nearest uint8 num_threads=2 1.7X 0.4ms vs 0.3ms (1, 3, 600, 400) -> (224, 224) nearest-exact float32 num_threads=2 2.1X 0.5ms vs 0.3ms (1, 3, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=2 1.8X 0.5ms vs 0.3ms (1, 1, 600, 400) -> (224, 224) linear float32 num_threads=2 10X 0.808ms vs 0.084ms (1, 1, 600, 400) -> (224, 224) nearest float32 num_threads=2 10X 0.462ms vs 0.046ms (1, 1, 600, 400) -> (224, 224) nearest uint8 num_threads=2 7X 0.429ms vs 0.062ms (1, 1, 600, 400) -> (224, 224) nearest-exact float32 num_threads=2 12X 0.504ms vs 0.044ms (1, 1, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=2 7X 0.461ms vs 0.063ms (1, 3, 600, 400) -> (224, 224) linear float32 num_threads=12 4X 1.0ms vs 0.2ms (1, 3, 600, 400) -> (224, 224) nearest float32 num_threads=12 1.7X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest-exact float32 num_threads=12 1.9X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=12 1.6X 0.2ms vs 0.1ms (1, 1, 600, 400) -> (224, 224) linear float32 num_threads=12 12X 0.820ms vs 0.067ms (1, 1, 600, 400) -> (224, 224) nearest float32 num_threads=12 11X 0.438ms vs 0.041ms (1, 1, 600, 400) -> (224, 224) nearest uint8 num_threads=12 8X 0.431ms vs 0.056ms (1, 1, 600, 400) -> (224, 224) nearest-exact float32 num_threads=12 12X 0.482ms vs 0.041ms (1, 1, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=12 8X 0.467ms vs 0.056ms (1, 3, 600, 400) -> (224, 224) linear float32 num_threads=32 4X 1.0ms vs 0.3ms (1, 3, 600, 400) -> (224, 224) nearest float32 num_threads=32 1.7X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest-exact float32 num_threads=32 1.8X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 1, 600, 400) -> (224, 224) linear float32 num_threads=32 12X 0.824ms vs 0.070ms (1, 1, 600, 400) -> (224, 224) nearest float32 num_threads=32 10X 0.443ms vs 0.044ms (1, 1, 600, 400) -> (224, 224) nearest uint8 num_threads=32 7X 0.438ms vs 0.059ms (1, 1, 600, 400) -> (224, 224) nearest-exact float32 num_threads=32 11X 0.479ms vs 0.045ms (1, 1, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=32 8X 0.470ms vs 0.059ms ---------------------------------------------------------------------------------------------------- (1, 3, 800, 800) -> (500, 500) linear float32 num_threads=1 1.0X 4.7ms vs 4.7ms (1, 3, 800, 800) -> (500, 500) nearest float32 num_threads=1 2.0X 4.4ms vs 2.2ms (1, 3, 800, 800) -> (500, 500) nearest uint8 num_threads=1 1.8X 4.3ms vs 2.5ms (1, 3, 800, 800) -> (500, 500) nearest-exact float32 num_threads=1 2.1X 4.7ms vs 2.2ms (1, 3, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=1 1.9X 4.6ms vs 2.5ms (1, 1, 800, 800) -> (500, 500) linear float32 num_threads=1 9X 4.0ms vs 0.4ms (1, 1, 800, 800) -> (500, 500) nearest float32 num_threads=1 17X 4.2ms vs 0.2ms (1, 1, 800, 800) -> (500, 500) nearest uint8 num_threads=1 11X 4.1ms vs 0.4ms (1, 1, 800, 800) -> (500, 500) nearest-exact float32 num_threads=1 19X 4.6ms vs 0.2ms (1, 1, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=1 12X 4.5ms vs 0.4ms (1, 3, 800, 800) -> (500, 500) linear float32 num_threads=2 1.7X 4.7ms vs 2.7ms (1, 3, 800, 800) -> (500, 500) nearest float32 num_threads=2 2.1X 2.4ms vs 1.1ms (1, 3, 800, 800) -> (500, 500) nearest uint8 num_threads=2 1.8X 2.2ms vs 1.3ms (1, 3, 800, 800) -> (500, 500) nearest-exact float32 num_threads=2 2.3X 2.6ms vs 1.1ms (1, 3, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=2 1.9X 2.3ms vs 1.3ms (1, 1, 800, 800) -> (500, 500) linear float32 num_threads=2 15X 4.0ms vs 0.3ms (1, 1, 800, 800) -> (500, 500) nearest float32 num_threads=2 16X 2.3ms vs 0.1ms (1, 1, 800, 800) -> (500, 500) nearest uint8 num_threads=2 9X 2.1ms vs 0.2ms (1, 1, 800, 800) -> (500, 500) nearest-exact float32 num_threads=2 17X 2.5ms vs 0.1ms (1, 1, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=2 10X 2.3ms vs 0.2ms (1, 3, 800, 800) -> (500, 500) linear float32 num_threads=12 10X 4.7ms vs 0.5ms (1, 3, 800, 800) -> (500, 500) nearest float32 num_threads=12 1.9X 0.4ms vs 0.2ms (1, 3, 800, 800) -> (500, 500) nearest uint8 num_threads=12 1.7X 0.4ms vs 0.2ms (1, 3, 800, 800) -> (500, 500) nearest-exact float32 num_threads=12 1.9X 0.4ms vs 0.2ms (1, 3, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=12 1.8X 0.4ms vs 0.2ms (1, 1, 800, 800) -> (500, 500) linear float32 num_threads=12 41X 3.969ms vs 0.096ms (1, 1, 800, 800) -> (500, 500) nearest float32 num_threads=12 11X 0.545ms vs 0.051ms (1, 1, 800, 800) -> (500, 500) nearest uint8 num_threads=12 8X 0.532ms vs 0.070ms (1, 1, 800, 800) -> (500, 500) nearest-exact float32 num_threads=12 11X 0.590ms vs 0.052ms (1, 1, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=12 8X 0.578ms vs 0.071ms (1, 3, 800, 800) -> (500, 500) linear float32 num_threads=32 17X 4.7ms vs 0.3ms (1, 3, 800, 800) -> (500, 500) nearest float32 num_threads=32 1.8X 0.2ms vs 0.1ms (1, 3, 800, 800) -> (500, 500) nearest uint8 num_threads=32 2.0X 0.3ms vs 0.1ms (1, 3, 800, 800) -> (500, 500) nearest-exact float32 num_threads=32 1.9X 0.2ms vs 0.1ms (1, 3, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 1, 800, 800) -> (500, 500) linear float32 num_threads=32 45X 4.028ms vs 0.090ms (1, 1, 800, 800) -> (500, 500) nearest float32 num_threads=32 10X 0.549ms vs 0.053ms (1, 1, 800, 800) -> (500, 500) nearest uint8 num_threads=32 7X 0.536ms vs 0.072ms (1, 1, 800, 800) -> (500, 500) nearest-exact float32 num_threads=32 11X 0.592ms vs 0.055ms (1, 1, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=32 8X 0.581ms vs 0.074ms ``` </details> Code: <details> I used this file which is adapted from https://github.com/pytorch/pytorch/blob/master/benchmarks/operator_benchmark/pt/interpolate_test.py ```py import operator_benchmark as op_bench import torch """Microbenchmarks for interpolate operator.""" class InterpolateBenchmark(op_bench.TorchBenchmarkBase): def init(self, input_size, output_size, channels_last=False, mode='linear', dtype=torch.float): input_image = torch.randint(0, 256, size=input_size, dtype=dtype, device='cpu', requires_grad=self.auto_set()) if channels_last: if input_image.ndim == 4: input_image = input_image.contiguous(memory_format=torch.channels_last) elif input_image.ndim == 5: input_image = input_image.contiguous(memory_format=torch.channels_last_3d) else: raise ValueError( f"Can not set channels_last to the input of {input_image.ndim} dims" ) align_corners = None if "nearest" in mode else False if mode == "linear": mode = { 3: 'linear', 4: 'bilinear', 5: 'trilinear', }[input_image.ndim] self.inputs = { "input_image": input_image, "output_size": output_size, "mode": mode, "align_corners": align_corners, } self.set_module_name("interpolate") def forward(self, input_image, output_size, mode, align_corners): return torch.nn.functional.interpolate(input_image, size=output_size, mode=mode, align_corners=align_corners) def make_config(): sizes = ( ((224, 224), (64, 64)), ((224, 224), (128, 128)), ((600, 400), (224, 224)), ((320, 320), (256, 256)), ((800, 800), (500, 500)), ) attrs = [] for (HW1, HW2) in sizes: attrs.append([(1, 3, *HW1), HW2]) # 3 channels attrs.append([(1, 1, *HW1), HW2]) # 1 channel attrs.append([(1, 3, *HW2), HW1]) # 3 channels attrs.append([(1, 1, *HW2), HW1]) # 1 channel config = op_bench.config_list( attr_names=["input_size", "output_size"], attrs=attrs, cross_product_configs={ 'channels_last': [True], 'mode': ["linear", "nearest", "nearest-exact"], 'dtype': [torch.float, torch.uint8] }, tags=["short"], ) # Need to remove instances with both torch.int and linear # Note: this is naaaasty def get_mode(l): for d in l: if "mode" in d: return d["mode"] def get_dtype(l): for d in l: if "dtype" in d: return d["dtype"] config = [l for l in config if not(get_mode(l) == "linear" and get_dtype(l) == torch.uint8)] return config config = make_config() op_bench.generate_pt_test(config, InterpolateBenchmark) if __name__ == "__main__": op_bench.benchmark_runner.main() ``` with ``` for num_threads in 1 2 12 32; do echo "num_threads=$num_threads" && python -m pt.my_interpolate_test --iterations 1000 --omp_num_threads $num_threads ; done > $out_file ``` and this very ugly helper ```py import re with open("main") as f: main = f.readlines() with open("new") as f: new = f.readlines() out = [] for main_line, new_line in zip(main, new): if main_line.startswith("num_threads="): num_threads = int(main_line.split("=")[-1]) if main_line.startswith("# Input"): deets = f"{main_line.strip()}, {num_threads=}" if main_line.startswith("Forward"): main_time = float(main_line.split()[-1]) new_time = float(new_line.split()[-1]) ratio = main_time / new_time fmt = ".1f" if ratio < 3 else ".0f" improv = f"{ratio:{fmt}}X" time_fmt = ",.3f" if new_time < 100 else ",.1f" deets = deets.strip().replace("# Input: ", "") deets = deets.replace(": ", "=") deets = deets.replace("input_size=", "") deets = deets.replace(", output_size=", " -> ") deets = deets.replace("dtype=torch.", "") deets = deets.replace("mode=", "") deets = deets.replace("channels_last=True, ", "") split = deets.split(",") size = ','.join(split[:-3]) mode, dtype, threads = split[-3:] deets = f"{size:<30} {mode:<15} {dtype:<10} {threads:<15}" l = f"{deets} {improv:<5} {main_time / 1000:{time_fmt}}ms vs {new_time / 1000:{time_fmt}}ms" out.append(l) def key(s): # s = ''.join(s.split()[1:]) # remove "N.nX" part num_threads = (int(re.findall(r"num_threads=(\d+)", s)[0]),) input_shape, output_shape = re.findall("\(.*?\)", s) input_shape = input_shape[1:-1] # remove parenthesis input_HW = tuple(int(x) for x in input_shape.split(",")[-2:]) input_C = (-int(input_shape.split(",")[1]),) output_HW = tuple(int(x) for x in output_shape[1:-1].split(",")) is_downsample = (output_HW[0] < input_HW[0],) if "linear" in s: mode = "linear" elif "nearest-exact" in s: mode = "nearest-exact" else: assert "nearest" in s mode = "nearest" mode = (mode,) return is_downsample + input_HW + output_HW + num_threads + input_C + mode for i, l in enumerate(sorted(out, key=key)): if i % 10 == 0 and i % 40 != 0: print() if i % 40 == 0: print("-" * 100) print(l) ``` </details> Closes #83840 When this is merged we should be able to remove some hack in vision as well pytorch/vision#6661 (CC vfdev-5 datumbox ) Pull Request resolved: #86361 Approved by: https://github.com/vfdev-5, https://github.com/datumbox, https://github.com/fmassa Test Plan: contbuild & OSS CI, see https://hud.pytorch.org/commit/pytorch/pytorch/93b2d991581db86074dd8011fdc903bd554466b1 Reviewed By: seemethere Differential Revision: D40217870 Pulled By: seemethere fbshipit-source-id: d02c2fc7fb27016e5426ea03d274e394f431d088
…86361) This PR improves the speed of `interpolate()`: - on CPU - on images and masks (`num_channels < 4`, `channels_last=True`) - for the following modes: linear (antialias=False), nearest (int and float), and nearest-exact (int and float) - for both upsampling and downsampling The actual speed-up ranges from 1.1X to 110X, but this depends on various factors like number of threads and of course input_size/output_size. In a typical torchvision ImageNet training job (where num_threads=1 because of DataLoader multi-processing), the following speed-ups should be expected (I ran much more benchmarks than this one, see below for more details): ``` (1, 3, 600, 400) -> (224, 224) linear float32 num_threads=1 1.0X 1.0ms vs 1.0ms (1, 3, 600, 400) -> (224, 224) nearest float32 num_threads=1 1.9X 0.9ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest uint8 num_threads=1 1.7X 0.9ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest-exact float32 num_threads=1 2.1X 1.0ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=1 1.8X 0.9ms vs 0.5ms (1, 1, 600, 400) -> (224, 224) linear float32 num_threads=1 7X 0.8ms vs 0.1ms (1, 1, 600, 400) -> (224, 224) nearest float32 num_threads=1 14X 0.852ms vs 0.061ms (1, 1, 600, 400) -> (224, 224) nearest uint8 num_threads=1 9X 0.828ms vs 0.087ms (1, 1, 600, 400) -> (224, 224) nearest-exact float32 num_threads=1 15X 0.922ms vs 0.061ms (1, 1, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=1 10X 0.897ms vs 0.087ms ``` An immediate follow-up to this PR would be to do the same changes for the 3D kernels. Thanks a ton @fmassa for the help! ### Speedup benchmarks: Results: <details> ``` ---------------------------------------------------------------------------------------------------- (1, 3, 64, 64) -> (224, 224) linear float32 num_threads=1 0.9X 0.9ms vs 1.1ms (1, 3, 64, 64) -> (224, 224) nearest float32 num_threads=1 1.6X 0.9ms vs 0.5ms (1, 3, 64, 64) -> (224, 224) nearest uint8 num_threads=1 1.7X 0.9ms vs 0.5ms (1, 3, 64, 64) -> (224, 224) nearest-exact float32 num_threads=1 1.7X 1.0ms vs 0.5ms (1, 3, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=1 1.9X 0.9ms vs 0.5ms (1, 1, 64, 64) -> (224, 224) linear float32 num_threads=1 8X 0.806ms vs 0.097ms (1, 1, 64, 64) -> (224, 224) nearest float32 num_threads=1 15X 0.848ms vs 0.056ms (1, 1, 64, 64) -> (224, 224) nearest uint8 num_threads=1 10X 0.828ms vs 0.084ms (1, 1, 64, 64) -> (224, 224) nearest-exact float32 num_threads=1 16X 0.914ms vs 0.057ms (1, 1, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=1 10X 0.900ms vs 0.086ms (1, 3, 64, 64) -> (224, 224) linear float32 num_threads=2 1.6X 1.1ms vs 0.7ms (1, 3, 64, 64) -> (224, 224) nearest float32 num_threads=2 1.6X 0.6ms vs 0.4ms (1, 3, 64, 64) -> (224, 224) nearest uint8 num_threads=2 1.7X 0.4ms vs 0.3ms (1, 3, 64, 64) -> (224, 224) nearest-exact float32 num_threads=2 1.7X 0.6ms vs 0.4ms (1, 3, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=2 1.7X 0.5ms vs 0.3ms (1, 1, 64, 64) -> (224, 224) linear float32 num_threads=2 9X 0.800ms vs 0.088ms (1, 1, 64, 64) -> (224, 224) nearest float32 num_threads=2 11X 0.459ms vs 0.043ms (1, 1, 64, 64) -> (224, 224) nearest uint8 num_threads=2 7X 0.424ms vs 0.064ms (1, 1, 64, 64) -> (224, 224) nearest-exact float32 num_threads=2 12X 0.503ms vs 0.043ms (1, 1, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=2 8X 0.461ms vs 0.059ms (1, 3, 64, 64) -> (224, 224) linear float32 num_threads=12 3X 1.1ms vs 0.3ms (1, 3, 64, 64) -> (224, 224) nearest float32 num_threads=12 1.6X 0.3ms vs 0.2ms (1, 3, 64, 64) -> (224, 224) nearest uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 64, 64) -> (224, 224) nearest-exact float32 num_threads=12 1.5X 0.3ms vs 0.2ms (1, 3, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 1, 64, 64) -> (224, 224) linear float32 num_threads=12 5X 0.8ms vs 0.2ms (1, 1, 64, 64) -> (224, 224) nearest float32 num_threads=12 10X 0.445ms vs 0.047ms (1, 1, 64, 64) -> (224, 224) nearest uint8 num_threads=12 7X 0.432ms vs 0.062ms (1, 1, 64, 64) -> (224, 224) nearest-exact float32 num_threads=12 10X 0.478ms vs 0.046ms (1, 1, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=12 7X 0.470ms vs 0.063ms (1, 3, 64, 64) -> (224, 224) linear float32 num_threads=32 3X 1.1ms vs 0.4ms (1, 3, 64, 64) -> (224, 224) nearest float32 num_threads=32 1.8X 0.3ms vs 0.2ms (1, 3, 64, 64) -> (224, 224) nearest uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 64, 64) -> (224, 224) nearest-exact float32 num_threads=32 1.4X 0.3ms vs 0.2ms (1, 3, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 1, 64, 64) -> (224, 224) linear float32 num_threads=32 11X 0.815ms vs 0.074ms (1, 1, 64, 64) -> (224, 224) nearest float32 num_threads=32 10X 0.443ms vs 0.045ms (1, 1, 64, 64) -> (224, 224) nearest uint8 num_threads=32 7X 0.436ms vs 0.061ms (1, 1, 64, 64) -> (224, 224) nearest-exact float32 num_threads=32 10X 0.478ms vs 0.046ms (1, 1, 64, 64) -> (224, 224) nearest-exact uint8 num_threads=32 8X 0.470ms vs 0.061ms ---------------------------------------------------------------------------------------------------- (1, 3, 128, 128) -> (224, 224) linear float32 num_threads=1 0.9X 0.9ms vs 1.1ms (1, 3, 128, 128) -> (224, 224) nearest float32 num_threads=1 1.5X 0.9ms vs 0.6ms (1, 3, 128, 128) -> (224, 224) nearest uint8 num_threads=1 1.7X 0.9ms vs 0.5ms (1, 3, 128, 128) -> (224, 224) nearest-exact float32 num_threads=1 1.6X 1.0ms vs 0.6ms (1, 3, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=1 1.8X 0.9ms vs 0.5ms (1, 1, 128, 128) -> (224, 224) linear float32 num_threads=1 8X 0.808ms vs 0.099ms (1, 1, 128, 128) -> (224, 224) nearest float32 num_threads=1 15X 0.848ms vs 0.058ms (1, 1, 128, 128) -> (224, 224) nearest uint8 num_threads=1 9X 0.820ms vs 0.087ms (1, 1, 128, 128) -> (224, 224) nearest-exact float32 num_threads=1 16X 0.909ms vs 0.059ms (1, 1, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=1 10X 0.898ms vs 0.088ms (1, 3, 128, 128) -> (224, 224) linear float32 num_threads=2 1.4X 0.9ms vs 0.7ms (1, 3, 128, 128) -> (224, 224) nearest float32 num_threads=2 1.5X 0.5ms vs 0.3ms (1, 3, 128, 128) -> (224, 224) nearest uint8 num_threads=2 1.7X 0.4ms vs 0.3ms (1, 3, 128, 128) -> (224, 224) nearest-exact float32 num_threads=2 1.5X 0.5ms vs 0.4ms (1, 3, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=2 1.8X 0.5ms vs 0.3ms (1, 1, 128, 128) -> (224, 224) linear float32 num_threads=2 9X 0.799ms vs 0.090ms (1, 1, 128, 128) -> (224, 224) nearest float32 num_threads=2 10X 0.459ms vs 0.045ms (1, 1, 128, 128) -> (224, 224) nearest uint8 num_threads=2 7X 0.427ms vs 0.059ms (1, 1, 128, 128) -> (224, 224) nearest-exact float32 num_threads=2 11X 0.501ms vs 0.044ms (1, 1, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=2 8X 0.460ms vs 0.060ms (1, 3, 128, 128) -> (224, 224) linear float32 num_threads=12 2.9X 1.0ms vs 0.3ms (1, 3, 128, 128) -> (224, 224) nearest float32 num_threads=12 1.2X 0.2ms vs 0.2ms (1, 3, 128, 128) -> (224, 224) nearest uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 128, 128) -> (224, 224) nearest-exact float32 num_threads=12 1.1X 0.2ms vs 0.2ms (1, 3, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=12 1.6X 0.2ms vs 0.1ms (1, 1, 128, 128) -> (224, 224) linear float32 num_threads=12 12X 0.809ms vs 0.068ms (1, 1, 128, 128) -> (224, 224) nearest float32 num_threads=12 11X 0.438ms vs 0.041ms (1, 1, 128, 128) -> (224, 224) nearest uint8 num_threads=12 8X 0.432ms vs 0.055ms (1, 1, 128, 128) -> (224, 224) nearest-exact float32 num_threads=12 12X 0.480ms vs 0.041ms (1, 1, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=12 8X 0.464ms vs 0.056ms (1, 3, 128, 128) -> (224, 224) linear float32 num_threads=32 3X 1.1ms vs 0.3ms (1, 3, 128, 128) -> (224, 224) nearest float32 num_threads=32 1.3X 0.3ms vs 0.2ms (1, 3, 128, 128) -> (224, 224) nearest uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 128, 128) -> (224, 224) nearest-exact float32 num_threads=32 1.4X 0.3ms vs 0.2ms (1, 3, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 1, 128, 128) -> (224, 224) linear float32 num_threads=32 11X 0.813ms vs 0.075ms (1, 1, 128, 128) -> (224, 224) nearest float32 num_threads=32 10X 0.443ms vs 0.046ms (1, 1, 128, 128) -> (224, 224) nearest uint8 num_threads=32 7X 0.433ms vs 0.061ms (1, 1, 128, 128) -> (224, 224) nearest-exact float32 num_threads=32 10X 0.478ms vs 0.046ms (1, 1, 128, 128) -> (224, 224) nearest-exact uint8 num_threads=32 8X 0.470ms vs 0.062ms ---------------------------------------------------------------------------------------------------- (1, 3, 224, 224) -> (600, 400) linear float32 num_threads=1 0.9X 4.5ms vs 5.2ms (1, 3, 224, 224) -> (600, 400) nearest float32 num_threads=1 1.5X 4.2ms vs 2.8ms (1, 3, 224, 224) -> (600, 400) nearest uint8 num_threads=1 1.8X 4.1ms vs 2.3ms (1, 3, 224, 224) -> (600, 400) nearest-exact float32 num_threads=1 1.6X 4.5ms vs 2.8ms (1, 3, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=1 1.9X 4.4ms vs 2.3ms (1, 1, 224, 224) -> (600, 400) linear float32 num_threads=1 9X 3.8ms vs 0.4ms (1, 1, 224, 224) -> (600, 400) nearest float32 num_threads=1 17X 4.0ms vs 0.2ms (1, 1, 224, 224) -> (600, 400) nearest uint8 num_threads=1 11X 3.9ms vs 0.4ms (1, 1, 224, 224) -> (600, 400) nearest-exact float32 num_threads=1 19X 4.4ms vs 0.2ms (1, 1, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=1 12X 4.3ms vs 0.4ms (1, 3, 224, 224) -> (600, 400) linear float32 num_threads=2 1.5X 4.5ms vs 3.1ms (1, 3, 224, 224) -> (600, 400) nearest float32 num_threads=2 1.4X 2.3ms vs 1.6ms (1, 3, 224, 224) -> (600, 400) nearest uint8 num_threads=2 1.7X 2.1ms vs 1.2ms (1, 3, 224, 224) -> (600, 400) nearest-exact float32 num_threads=2 1.6X 2.5ms vs 1.6ms (1, 3, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=2 1.8X 2.2ms vs 1.2ms (1, 1, 224, 224) -> (600, 400) linear float32 num_threads=2 15X 3.8ms vs 0.3ms (1, 1, 224, 224) -> (600, 400) nearest float32 num_threads=2 15X 2.2ms vs 0.1ms (1, 1, 224, 224) -> (600, 400) nearest uint8 num_threads=2 7X 2.0ms vs 0.3ms (1, 1, 224, 224) -> (600, 400) nearest-exact float32 num_threads=2 16X 2.4ms vs 0.1ms (1, 1, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=2 8X 2.2ms vs 0.3ms (1, 3, 224, 224) -> (600, 400) linear float32 num_threads=12 8X 5.2ms vs 0.7ms (1, 3, 224, 224) -> (600, 400) nearest float32 num_threads=12 1.3X 0.6ms vs 0.4ms (1, 3, 224, 224) -> (600, 400) nearest uint8 num_threads=12 1.7X 0.4ms vs 0.2ms (1, 3, 224, 224) -> (600, 400) nearest-exact float32 num_threads=12 1.4X 0.6ms vs 0.4ms (1, 3, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=12 1.8X 0.4ms vs 0.2ms (1, 1, 224, 224) -> (600, 400) linear float32 num_threads=12 36X 3.9ms vs 0.1ms (1, 1, 224, 224) -> (600, 400) nearest float32 num_threads=12 10X 0.526ms vs 0.051ms (1, 1, 224, 224) -> (600, 400) nearest uint8 num_threads=12 7X 0.514ms vs 0.069ms (1, 1, 224, 224) -> (600, 400) nearest-exact float32 num_threads=12 11X 0.569ms vs 0.052ms (1, 1, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=12 8X 0.557ms vs 0.070ms (1, 3, 224, 224) -> (600, 400) linear float32 num_threads=32 9X 4.5ms vs 0.5ms (1, 3, 224, 224) -> (600, 400) nearest float32 num_threads=32 0.5X 0.2ms vs 0.5ms (1, 3, 224, 224) -> (600, 400) nearest uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 224, 224) -> (600, 400) nearest-exact float32 num_threads=32 1.0X 0.5ms vs 0.5ms (1, 3, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 1, 224, 224) -> (600, 400) linear float32 num_threads=32 44X 3.864ms vs 0.087ms (1, 1, 224, 224) -> (600, 400) nearest float32 num_threads=32 10X 0.527ms vs 0.053ms (1, 1, 224, 224) -> (600, 400) nearest uint8 num_threads=32 7X 0.516ms vs 0.070ms (1, 1, 224, 224) -> (600, 400) nearest-exact float32 num_threads=32 10X 0.567ms vs 0.055ms (1, 1, 224, 224) -> (600, 400) nearest-exact uint8 num_threads=32 8X 0.558ms vs 0.072ms ---------------------------------------------------------------------------------------------------- (1, 3, 256, 256) -> (320, 320) linear float32 num_threads=1 1.0X 1.9ms vs 1.9ms (1, 3, 256, 256) -> (320, 320) nearest float32 num_threads=1 2.0X 1.8ms vs 0.9ms (1, 3, 256, 256) -> (320, 320) nearest uint8 num_threads=1 1.7X 1.8ms vs 1.0ms (1, 3, 256, 256) -> (320, 320) nearest-exact float32 num_threads=1 2.1X 1.9ms vs 0.9ms (1, 3, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=1 1.9X 1.9ms vs 1.0ms (1, 1, 256, 256) -> (320, 320) linear float32 num_threads=1 9X 1.6ms vs 0.2ms (1, 1, 256, 256) -> (320, 320) nearest float32 num_threads=1 16X 1.7ms vs 0.1ms (1, 1, 256, 256) -> (320, 320) nearest uint8 num_threads=1 10X 1.7ms vs 0.2ms (1, 1, 256, 256) -> (320, 320) nearest-exact float32 num_threads=1 17X 1.9ms vs 0.1ms (1, 1, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=1 11X 1.8ms vs 0.2ms (1, 3, 256, 256) -> (320, 320) linear float32 num_threads=2 1.7X 1.9ms vs 1.1ms (1, 3, 256, 256) -> (320, 320) nearest float32 num_threads=2 2.0X 1.0ms vs 0.5ms (1, 3, 256, 256) -> (320, 320) nearest uint8 num_threads=2 1.7X 0.9ms vs 0.5ms (1, 3, 256, 256) -> (320, 320) nearest-exact float32 num_threads=2 2.3X 1.1ms vs 0.5ms (1, 3, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=2 1.8X 1.0ms vs 0.5ms (1, 1, 256, 256) -> (320, 320) linear float32 num_threads=2 8X 1.6ms vs 0.2ms (1, 1, 256, 256) -> (320, 320) nearest float32 num_threads=2 14X 0.931ms vs 0.067ms (1, 1, 256, 256) -> (320, 320) nearest uint8 num_threads=2 7X 0.9ms vs 0.1ms (1, 1, 256, 256) -> (320, 320) nearest-exact float32 num_threads=2 15X 1.016ms vs 0.069ms (1, 1, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=2 9X 0.9ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) linear float32 num_threads=12 8X 1.9ms vs 0.3ms (1, 3, 256, 256) -> (320, 320) nearest float32 num_threads=12 1.7X 0.2ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) nearest uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) nearest-exact float32 num_threads=12 1.9X 0.2ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=12 1.6X 0.2ms vs 0.1ms (1, 1, 256, 256) -> (320, 320) linear float32 num_threads=12 20X 1.630ms vs 0.081ms (1, 1, 256, 256) -> (320, 320) nearest float32 num_threads=12 10X 0.457ms vs 0.044ms (1, 1, 256, 256) -> (320, 320) nearest uint8 num_threads=12 7X 0.439ms vs 0.060ms (1, 1, 256, 256) -> (320, 320) nearest-exact float32 num_threads=12 11X 0.485ms vs 0.045ms (1, 1, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=12 8X 0.474ms vs 0.061ms (1, 3, 256, 256) -> (320, 320) linear float32 num_threads=32 8X 1.9ms vs 0.3ms (1, 3, 256, 256) -> (320, 320) nearest float32 num_threads=32 2.0X 0.2ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) nearest uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 3, 256, 256) -> (320, 320) nearest-exact float32 num_threads=32 1.4X 0.2ms vs 0.2ms (1, 3, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=32 1.4X 0.2ms vs 0.1ms (1, 1, 256, 256) -> (320, 320) linear float32 num_threads=32 21X 1.628ms vs 0.078ms (1, 1, 256, 256) -> (320, 320) nearest float32 num_threads=32 9X 0.453ms vs 0.048ms (1, 1, 256, 256) -> (320, 320) nearest uint8 num_threads=32 7X 0.445ms vs 0.063ms (1, 1, 256, 256) -> (320, 320) nearest-exact float32 num_threads=32 11X 0.535ms vs 0.048ms (1, 1, 256, 256) -> (320, 320) nearest-exact uint8 num_threads=32 8X 0.502ms vs 0.063ms ---------------------------------------------------------------------------------------------------- (1, 3, 500, 500) -> (800, 800) linear float32 num_threads=1 1.0X 13.8ms vs 14.0ms (1, 3, 500, 500) -> (800, 800) nearest float32 num_threads=1 1.8X 13.1ms vs 7.4ms (1, 3, 500, 500) -> (800, 800) nearest uint8 num_threads=1 1.8X 11.1ms vs 6.1ms (1, 3, 500, 500) -> (800, 800) nearest-exact float32 num_threads=1 1.9X 13.9ms vs 7.4ms (1, 3, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=1 1.9X 11.8ms vs 6.1ms (1, 1, 500, 500) -> (800, 800) linear float32 num_threads=1 10X 10.2ms vs 1.1ms (1, 1, 500, 500) -> (800, 800) nearest float32 num_threads=1 19X 10.8ms vs 0.6ms (1, 1, 500, 500) -> (800, 800) nearest uint8 num_threads=1 11X 10.4ms vs 0.9ms (1, 1, 500, 500) -> (800, 800) nearest-exact float32 num_threads=1 20X 11.6ms vs 0.6ms (1, 1, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=1 12X 11.4ms vs 0.9ms (1, 3, 500, 500) -> (800, 800) linear float32 num_threads=2 1.8X 13.7ms vs 7.7ms (1, 3, 500, 500) -> (800, 800) nearest float32 num_threads=2 2.6X 7.3ms vs 2.8ms (1, 3, 500, 500) -> (800, 800) nearest uint8 num_threads=2 1.8X 5.6ms vs 3.1ms (1, 3, 500, 500) -> (800, 800) nearest-exact float32 num_threads=2 1.9X 7.9ms vs 4.1ms (1, 3, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=2 1.9X 6.0ms vs 3.1ms (1, 1, 500, 500) -> (800, 800) linear float32 num_threads=2 18X 10.1ms vs 0.6ms (1, 1, 500, 500) -> (800, 800) nearest float32 num_threads=2 19X 5.8ms vs 0.3ms (1, 1, 500, 500) -> (800, 800) nearest uint8 num_threads=2 10X 5.3ms vs 0.5ms (1, 1, 500, 500) -> (800, 800) nearest-exact float32 num_threads=2 20X 6.3ms vs 0.3ms (1, 1, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=2 11X 5.7ms vs 0.5ms (1, 3, 500, 500) -> (800, 800) linear float32 num_threads=12 8X 13.8ms vs 1.6ms (1, 3, 500, 500) -> (800, 800) nearest float32 num_threads=12 2.9X 1.5ms vs 0.5ms (1, 3, 500, 500) -> (800, 800) nearest uint8 num_threads=12 1.7X 1.0ms vs 0.5ms (1, 3, 500, 500) -> (800, 800) nearest-exact float32 num_threads=12 1.5X 1.5ms vs 1.0ms (1, 3, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=12 1.8X 1.0ms vs 0.6ms (1, 1, 500, 500) -> (800, 800) linear float32 num_threads=12 80X 10.1ms vs 0.1ms (1, 1, 500, 500) -> (800, 800) nearest float32 num_threads=12 13X 0.928ms vs 0.072ms (1, 1, 500, 500) -> (800, 800) nearest uint8 num_threads=12 8X 0.9ms vs 0.1ms (1, 1, 500, 500) -> (800, 800) nearest-exact float32 num_threads=12 13X 1.001ms vs 0.074ms (1, 1, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=12 9X 1.0ms vs 0.1ms (1, 3, 500, 500) -> (800, 800) linear float32 num_threads=32 18X 14.0ms vs 0.8ms (1, 3, 500, 500) -> (800, 800) nearest float32 num_threads=32 1.9X 1.0ms vs 0.6ms (1, 3, 500, 500) -> (800, 800) nearest uint8 num_threads=32 2.9X 0.7ms vs 0.2ms (1, 3, 500, 500) -> (800, 800) nearest-exact float32 num_threads=32 1.7X 0.9ms vs 0.6ms (1, 3, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=32 1.8X 0.4ms vs 0.2ms (1, 1, 500, 500) -> (800, 800) linear float32 num_threads=32 111X 10.254ms vs 0.092ms (1, 1, 500, 500) -> (800, 800) nearest float32 num_threads=32 14X 0.784ms vs 0.056ms (1, 1, 500, 500) -> (800, 800) nearest uint8 num_threads=32 7X 0.551ms vs 0.075ms (1, 1, 500, 500) -> (800, 800) nearest-exact float32 num_threads=32 11X 0.607ms vs 0.057ms (1, 1, 500, 500) -> (800, 800) nearest-exact uint8 num_threads=32 8X 0.596ms vs 0.076ms ---------------------------------------------------------------------------------------------------- (1, 3, 224, 224) -> (64, 64) linear float32 num_threads=1 1.0X 0.084ms vs 0.084ms (1, 3, 224, 224) -> (64, 64) nearest float32 num_threads=1 1.0X 0.077ms vs 0.078ms (1, 3, 224, 224) -> (64, 64) nearest uint8 num_threads=1 1.0X 0.076ms vs 0.076ms (1, 3, 224, 224) -> (64, 64) nearest-exact float32 num_threads=1 1.0X 0.083ms vs 0.083ms (1, 3, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=1 1.0X 0.081ms vs 0.082ms (1, 1, 224, 224) -> (64, 64) linear float32 num_threads=1 1.0X 0.071ms vs 0.071ms (1, 1, 224, 224) -> (64, 64) nearest float32 num_threads=1 1.0X 0.074ms vs 0.074ms (1, 1, 224, 224) -> (64, 64) nearest uint8 num_threads=1 1.0X 0.072ms vs 0.072ms (1, 1, 224, 224) -> (64, 64) nearest-exact float32 num_threads=1 1.0X 0.080ms vs 0.080ms (1, 1, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=1 0.9X 0.078ms vs 0.084ms (1, 3, 224, 224) -> (64, 64) linear float32 num_threads=2 1.0X 0.083ms vs 0.084ms (1, 3, 224, 224) -> (64, 64) nearest float32 num_threads=2 1.0X 0.076ms vs 0.077ms (1, 3, 224, 224) -> (64, 64) nearest uint8 num_threads=2 1.0X 0.075ms vs 0.074ms (1, 3, 224, 224) -> (64, 64) nearest-exact float32 num_threads=2 1.0X 0.082ms vs 0.083ms (1, 3, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=2 1.0X 0.080ms vs 0.083ms (1, 1, 224, 224) -> (64, 64) linear float32 num_threads=2 1.0X 0.070ms vs 0.071ms (1, 1, 224, 224) -> (64, 64) nearest float32 num_threads=2 1.0X 0.073ms vs 0.075ms (1, 1, 224, 224) -> (64, 64) nearest uint8 num_threads=2 1.0X 0.071ms vs 0.072ms (1, 1, 224, 224) -> (64, 64) nearest-exact float32 num_threads=2 1.0X 0.079ms vs 0.080ms (1, 1, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=2 1.0X 0.077ms vs 0.079ms (1, 3, 224, 224) -> (64, 64) linear float32 num_threads=12 1.0X 0.083ms vs 0.084ms (1, 3, 224, 224) -> (64, 64) nearest float32 num_threads=12 1.0X 0.080ms vs 0.078ms (1, 3, 224, 224) -> (64, 64) nearest uint8 num_threads=12 1.0X 0.077ms vs 0.075ms (1, 3, 224, 224) -> (64, 64) nearest-exact float32 num_threads=12 1.0X 0.083ms vs 0.083ms (1, 3, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=12 1.0X 0.083ms vs 0.082ms (1, 1, 224, 224) -> (64, 64) linear float32 num_threads=12 1.0X 0.071ms vs 0.071ms (1, 1, 224, 224) -> (64, 64) nearest float32 num_threads=12 1.0X 0.076ms vs 0.074ms (1, 1, 224, 224) -> (64, 64) nearest uint8 num_threads=12 1.0X 0.073ms vs 0.071ms (1, 1, 224, 224) -> (64, 64) nearest-exact float32 num_threads=12 1.0X 0.080ms vs 0.080ms (1, 1, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=12 1.0X 0.080ms vs 0.078ms (1, 3, 224, 224) -> (64, 64) linear float32 num_threads=32 1.0X 0.084ms vs 0.084ms (1, 3, 224, 224) -> (64, 64) nearest float32 num_threads=32 1.0X 0.078ms vs 0.077ms (1, 3, 224, 224) -> (64, 64) nearest uint8 num_threads=32 1.0X 0.076ms vs 0.076ms (1, 3, 224, 224) -> (64, 64) nearest-exact float32 num_threads=32 1.0X 0.083ms vs 0.083ms (1, 3, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=32 1.0X 0.081ms vs 0.082ms (1, 1, 224, 224) -> (64, 64) linear float32 num_threads=32 1.0X 0.072ms vs 0.072ms (1, 1, 224, 224) -> (64, 64) nearest float32 num_threads=32 1.0X 0.074ms vs 0.075ms (1, 1, 224, 224) -> (64, 64) nearest uint8 num_threads=32 1.0X 0.072ms vs 0.072ms (1, 1, 224, 224) -> (64, 64) nearest-exact float32 num_threads=32 1.0X 0.077ms vs 0.080ms (1, 1, 224, 224) -> (64, 64) nearest-exact uint8 num_threads=32 1.0X 0.076ms vs 0.079ms ---------------------------------------------------------------------------------------------------- (1, 3, 224, 224) -> (128, 128) linear float32 num_threads=1 1.0X 0.3ms vs 0.3ms (1, 3, 224, 224) -> (128, 128) nearest float32 num_threads=1 1.8X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest uint8 num_threads=1 1.6X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest-exact float32 num_threads=1 2.0X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=1 1.7X 0.3ms vs 0.2ms (1, 1, 224, 224) -> (128, 128) linear float32 num_threads=1 6X 0.265ms vs 0.044ms (1, 1, 224, 224) -> (128, 128) nearest float32 num_threads=1 10X 0.280ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest uint8 num_threads=1 7X 0.273ms vs 0.037ms (1, 1, 224, 224) -> (128, 128) nearest-exact float32 num_threads=1 11X 0.303ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=1 8X 0.297ms vs 0.038ms (1, 3, 224, 224) -> (128, 128) linear float32 num_threads=2 1.5X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest float32 num_threads=2 1.8X 0.163ms vs 0.093ms (1, 3, 224, 224) -> (128, 128) nearest uint8 num_threads=2 1.5X 0.2ms vs 0.1ms (1, 3, 224, 224) -> (128, 128) nearest-exact float32 num_threads=2 1.9X 0.180ms vs 0.096ms (1, 3, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=2 1.6X 0.2ms vs 0.1ms (1, 1, 224, 224) -> (128, 128) linear float32 num_threads=2 6X 0.264ms vs 0.044ms (1, 1, 224, 224) -> (128, 128) nearest float32 num_threads=2 10X 0.278ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest uint8 num_threads=2 7X 0.270ms vs 0.037ms (1, 1, 224, 224) -> (128, 128) nearest-exact float32 num_threads=2 11X 0.298ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=2 8X 0.293ms vs 0.037ms (1, 3, 224, 224) -> (128, 128) linear float32 num_threads=12 1.5X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest float32 num_threads=12 1.7X 0.158ms vs 0.095ms (1, 3, 224, 224) -> (128, 128) nearest uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 224, 224) -> (128, 128) nearest-exact float32 num_threads=12 1.7X 0.170ms vs 0.100ms (1, 3, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=12 1.6X 0.2ms vs 0.1ms (1, 1, 224, 224) -> (128, 128) linear float32 num_threads=12 6X 0.269ms vs 0.043ms (1, 1, 224, 224) -> (128, 128) nearest float32 num_threads=12 11X 0.291ms vs 0.027ms (1, 1, 224, 224) -> (128, 128) nearest uint8 num_threads=12 8X 0.281ms vs 0.037ms (1, 1, 224, 224) -> (128, 128) nearest-exact float32 num_threads=12 11X 0.305ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=12 8X 0.306ms vs 0.038ms (1, 3, 224, 224) -> (128, 128) linear float32 num_threads=32 1.5X 0.3ms vs 0.2ms (1, 3, 224, 224) -> (128, 128) nearest float32 num_threads=32 1.6X 0.160ms vs 0.098ms (1, 3, 224, 224) -> (128, 128) nearest uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 224, 224) -> (128, 128) nearest-exact float32 num_threads=32 1.7X 0.171ms vs 0.099ms (1, 3, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 1, 224, 224) -> (128, 128) linear float32 num_threads=32 6X 0.269ms vs 0.044ms (1, 1, 224, 224) -> (128, 128) nearest float32 num_threads=32 10X 0.282ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest uint8 num_threads=32 7X 0.276ms vs 0.037ms (1, 1, 224, 224) -> (128, 128) nearest-exact float32 num_threads=32 11X 0.305ms vs 0.028ms (1, 1, 224, 224) -> (128, 128) nearest-exact uint8 num_threads=32 8X 0.299ms vs 0.038ms ---------------------------------------------------------------------------------------------------- (1, 3, 320, 320) -> (256, 256) linear float32 num_threads=1 1.0X 1.2ms vs 1.3ms (1, 3, 320, 320) -> (256, 256) nearest float32 num_threads=1 2.0X 1.2ms vs 0.6ms (1, 3, 320, 320) -> (256, 256) nearest uint8 num_threads=1 1.7X 1.1ms vs 0.7ms (1, 3, 320, 320) -> (256, 256) nearest-exact float32 num_threads=1 2.1X 1.2ms vs 0.6ms (1, 3, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=1 1.9X 1.2ms vs 0.7ms (1, 1, 320, 320) -> (256, 256) linear float32 num_threads=1 8X 1.1ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) nearest float32 num_threads=1 15X 1.109ms vs 0.073ms (1, 1, 320, 320) -> (256, 256) nearest uint8 num_threads=1 10X 1.1ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) nearest-exact float32 num_threads=1 16X 1.192ms vs 0.074ms (1, 1, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=1 11X 1.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) linear float32 num_threads=2 1.7X 1.2ms vs 0.7ms (1, 3, 320, 320) -> (256, 256) nearest float32 num_threads=2 2.0X 0.6ms vs 0.3ms (1, 3, 320, 320) -> (256, 256) nearest uint8 num_threads=2 1.7X 0.6ms vs 0.3ms (1, 3, 320, 320) -> (256, 256) nearest-exact float32 num_threads=2 2.2X 0.7ms vs 0.3ms (1, 3, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=2 1.8X 0.6ms vs 0.3ms (1, 1, 320, 320) -> (256, 256) linear float32 num_threads=2 9X 1.0ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) nearest float32 num_threads=2 11X 0.598ms vs 0.052ms (1, 1, 320, 320) -> (256, 256) nearest uint8 num_threads=2 8X 0.556ms vs 0.072ms (1, 1, 320, 320) -> (256, 256) nearest-exact float32 num_threads=2 12X 0.649ms vs 0.053ms (1, 1, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=2 8X 0.598ms vs 0.073ms (1, 3, 320, 320) -> (256, 256) linear float32 num_threads=12 5X 1.2ms vs 0.3ms (1, 3, 320, 320) -> (256, 256) nearest float32 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest uint8 num_threads=12 1.3X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest-exact float32 num_threads=12 1.6X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=12 1.4X 0.2ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) linear float32 num_threads=12 9X 1.0ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) nearest float32 num_threads=12 12X 0.572ms vs 0.048ms (1, 1, 320, 320) -> (256, 256) nearest uint8 num_threads=12 8X 0.560ms vs 0.068ms (1, 1, 320, 320) -> (256, 256) nearest-exact float32 num_threads=12 13X 0.617ms vs 0.049ms (1, 1, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=12 9X 0.604ms vs 0.068ms (1, 3, 320, 320) -> (256, 256) linear float32 num_threads=32 5X 1.2ms vs 0.3ms (1, 3, 320, 320) -> (256, 256) nearest float32 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest uint8 num_threads=32 1.4X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest-exact float32 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 3, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=32 1.4X 0.2ms vs 0.1ms (1, 1, 320, 320) -> (256, 256) linear float32 num_threads=32 13X 1.042ms vs 0.081ms (1, 1, 320, 320) -> (256, 256) nearest float32 num_threads=32 12X 0.586ms vs 0.050ms (1, 1, 320, 320) -> (256, 256) nearest uint8 num_threads=32 8X 0.562ms vs 0.069ms (1, 1, 320, 320) -> (256, 256) nearest-exact float32 num_threads=32 12X 0.621ms vs 0.051ms (1, 1, 320, 320) -> (256, 256) nearest-exact uint8 num_threads=32 9X 0.609ms vs 0.070ms ---------------------------------------------------------------------------------------------------- (1, 3, 600, 400) -> (224, 224) linear float32 num_threads=1 1.0X 1.0ms vs 1.0ms (1, 3, 600, 400) -> (224, 224) nearest float32 num_threads=1 1.9X 0.9ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest uint8 num_threads=1 1.7X 0.9ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest-exact float32 num_threads=1 2.1X 1.0ms vs 0.5ms (1, 3, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=1 1.8X 0.9ms vs 0.5ms (1, 1, 600, 400) -> (224, 224) linear float32 num_threads=1 7X 0.8ms vs 0.1ms (1, 1, 600, 400) -> (224, 224) nearest float32 num_threads=1 14X 0.852ms vs 0.061ms (1, 1, 600, 400) -> (224, 224) nearest uint8 num_threads=1 9X 0.828ms vs 0.087ms (1, 1, 600, 400) -> (224, 224) nearest-exact float32 num_threads=1 15X 0.922ms vs 0.061ms (1, 1, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=1 10X 0.897ms vs 0.087ms (1, 3, 600, 400) -> (224, 224) linear float32 num_threads=2 1.6X 0.9ms vs 0.6ms (1, 3, 600, 400) -> (224, 224) nearest float32 num_threads=2 1.9X 0.5ms vs 0.2ms (1, 3, 600, 400) -> (224, 224) nearest uint8 num_threads=2 1.7X 0.4ms vs 0.3ms (1, 3, 600, 400) -> (224, 224) nearest-exact float32 num_threads=2 2.1X 0.5ms vs 0.3ms (1, 3, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=2 1.8X 0.5ms vs 0.3ms (1, 1, 600, 400) -> (224, 224) linear float32 num_threads=2 10X 0.808ms vs 0.084ms (1, 1, 600, 400) -> (224, 224) nearest float32 num_threads=2 10X 0.462ms vs 0.046ms (1, 1, 600, 400) -> (224, 224) nearest uint8 num_threads=2 7X 0.429ms vs 0.062ms (1, 1, 600, 400) -> (224, 224) nearest-exact float32 num_threads=2 12X 0.504ms vs 0.044ms (1, 1, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=2 7X 0.461ms vs 0.063ms (1, 3, 600, 400) -> (224, 224) linear float32 num_threads=12 4X 1.0ms vs 0.2ms (1, 3, 600, 400) -> (224, 224) nearest float32 num_threads=12 1.7X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest uint8 num_threads=12 1.5X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest-exact float32 num_threads=12 1.9X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=12 1.6X 0.2ms vs 0.1ms (1, 1, 600, 400) -> (224, 224) linear float32 num_threads=12 12X 0.820ms vs 0.067ms (1, 1, 600, 400) -> (224, 224) nearest float32 num_threads=12 11X 0.438ms vs 0.041ms (1, 1, 600, 400) -> (224, 224) nearest uint8 num_threads=12 8X 0.431ms vs 0.056ms (1, 1, 600, 400) -> (224, 224) nearest-exact float32 num_threads=12 12X 0.482ms vs 0.041ms (1, 1, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=12 8X 0.467ms vs 0.056ms (1, 3, 600, 400) -> (224, 224) linear float32 num_threads=32 4X 1.0ms vs 0.3ms (1, 3, 600, 400) -> (224, 224) nearest float32 num_threads=32 1.7X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest uint8 num_threads=32 1.5X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest-exact float32 num_threads=32 1.8X 0.2ms vs 0.1ms (1, 3, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 1, 600, 400) -> (224, 224) linear float32 num_threads=32 12X 0.824ms vs 0.070ms (1, 1, 600, 400) -> (224, 224) nearest float32 num_threads=32 10X 0.443ms vs 0.044ms (1, 1, 600, 400) -> (224, 224) nearest uint8 num_threads=32 7X 0.438ms vs 0.059ms (1, 1, 600, 400) -> (224, 224) nearest-exact float32 num_threads=32 11X 0.479ms vs 0.045ms (1, 1, 600, 400) -> (224, 224) nearest-exact uint8 num_threads=32 8X 0.470ms vs 0.059ms ---------------------------------------------------------------------------------------------------- (1, 3, 800, 800) -> (500, 500) linear float32 num_threads=1 1.0X 4.7ms vs 4.7ms (1, 3, 800, 800) -> (500, 500) nearest float32 num_threads=1 2.0X 4.4ms vs 2.2ms (1, 3, 800, 800) -> (500, 500) nearest uint8 num_threads=1 1.8X 4.3ms vs 2.5ms (1, 3, 800, 800) -> (500, 500) nearest-exact float32 num_threads=1 2.1X 4.7ms vs 2.2ms (1, 3, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=1 1.9X 4.6ms vs 2.5ms (1, 1, 800, 800) -> (500, 500) linear float32 num_threads=1 9X 4.0ms vs 0.4ms (1, 1, 800, 800) -> (500, 500) nearest float32 num_threads=1 17X 4.2ms vs 0.2ms (1, 1, 800, 800) -> (500, 500) nearest uint8 num_threads=1 11X 4.1ms vs 0.4ms (1, 1, 800, 800) -> (500, 500) nearest-exact float32 num_threads=1 19X 4.6ms vs 0.2ms (1, 1, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=1 12X 4.5ms vs 0.4ms (1, 3, 800, 800) -> (500, 500) linear float32 num_threads=2 1.7X 4.7ms vs 2.7ms (1, 3, 800, 800) -> (500, 500) nearest float32 num_threads=2 2.1X 2.4ms vs 1.1ms (1, 3, 800, 800) -> (500, 500) nearest uint8 num_threads=2 1.8X 2.2ms vs 1.3ms (1, 3, 800, 800) -> (500, 500) nearest-exact float32 num_threads=2 2.3X 2.6ms vs 1.1ms (1, 3, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=2 1.9X 2.3ms vs 1.3ms (1, 1, 800, 800) -> (500, 500) linear float32 num_threads=2 15X 4.0ms vs 0.3ms (1, 1, 800, 800) -> (500, 500) nearest float32 num_threads=2 16X 2.3ms vs 0.1ms (1, 1, 800, 800) -> (500, 500) nearest uint8 num_threads=2 9X 2.1ms vs 0.2ms (1, 1, 800, 800) -> (500, 500) nearest-exact float32 num_threads=2 17X 2.5ms vs 0.1ms (1, 1, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=2 10X 2.3ms vs 0.2ms (1, 3, 800, 800) -> (500, 500) linear float32 num_threads=12 10X 4.7ms vs 0.5ms (1, 3, 800, 800) -> (500, 500) nearest float32 num_threads=12 1.9X 0.4ms vs 0.2ms (1, 3, 800, 800) -> (500, 500) nearest uint8 num_threads=12 1.7X 0.4ms vs 0.2ms (1, 3, 800, 800) -> (500, 500) nearest-exact float32 num_threads=12 1.9X 0.4ms vs 0.2ms (1, 3, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=12 1.8X 0.4ms vs 0.2ms (1, 1, 800, 800) -> (500, 500) linear float32 num_threads=12 41X 3.969ms vs 0.096ms (1, 1, 800, 800) -> (500, 500) nearest float32 num_threads=12 11X 0.545ms vs 0.051ms (1, 1, 800, 800) -> (500, 500) nearest uint8 num_threads=12 8X 0.532ms vs 0.070ms (1, 1, 800, 800) -> (500, 500) nearest-exact float32 num_threads=12 11X 0.590ms vs 0.052ms (1, 1, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=12 8X 0.578ms vs 0.071ms (1, 3, 800, 800) -> (500, 500) linear float32 num_threads=32 17X 4.7ms vs 0.3ms (1, 3, 800, 800) -> (500, 500) nearest float32 num_threads=32 1.8X 0.2ms vs 0.1ms (1, 3, 800, 800) -> (500, 500) nearest uint8 num_threads=32 2.0X 0.3ms vs 0.1ms (1, 3, 800, 800) -> (500, 500) nearest-exact float32 num_threads=32 1.9X 0.2ms vs 0.1ms (1, 3, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=32 1.6X 0.2ms vs 0.1ms (1, 1, 800, 800) -> (500, 500) linear float32 num_threads=32 45X 4.028ms vs 0.090ms (1, 1, 800, 800) -> (500, 500) nearest float32 num_threads=32 10X 0.549ms vs 0.053ms (1, 1, 800, 800) -> (500, 500) nearest uint8 num_threads=32 7X 0.536ms vs 0.072ms (1, 1, 800, 800) -> (500, 500) nearest-exact float32 num_threads=32 11X 0.592ms vs 0.055ms (1, 1, 800, 800) -> (500, 500) nearest-exact uint8 num_threads=32 8X 0.581ms vs 0.074ms ``` </details> Code: <details> I used this file which is adapted from https://github.com/pytorch/pytorch/blob/master/benchmarks/operator_benchmark/pt/interpolate_test.py ```py import operator_benchmark as op_bench import torch """Microbenchmarks for interpolate operator.""" class InterpolateBenchmark(op_bench.TorchBenchmarkBase): def init(self, input_size, output_size, channels_last=False, mode='linear', dtype=torch.float): input_image = torch.randint(0, 256, size=input_size, dtype=dtype, device='cpu', requires_grad=self.auto_set()) if channels_last: if input_image.ndim == 4: input_image = input_image.contiguous(memory_format=torch.channels_last) elif input_image.ndim == 5: input_image = input_image.contiguous(memory_format=torch.channels_last_3d) else: raise ValueError( f"Can not set channels_last to the input of {input_image.ndim} dims" ) align_corners = None if "nearest" in mode else False if mode == "linear": mode = { 3: 'linear', 4: 'bilinear', 5: 'trilinear', }[input_image.ndim] self.inputs = { "input_image": input_image, "output_size": output_size, "mode": mode, "align_corners": align_corners, } self.set_module_name("interpolate") def forward(self, input_image, output_size, mode, align_corners): return torch.nn.functional.interpolate(input_image, size=output_size, mode=mode, align_corners=align_corners) def make_config(): sizes = ( ((224, 224), (64, 64)), ((224, 224), (128, 128)), ((600, 400), (224, 224)), ((320, 320), (256, 256)), ((800, 800), (500, 500)), ) attrs = [] for (HW1, HW2) in sizes: attrs.append([(1, 3, *HW1), HW2]) # 3 channels attrs.append([(1, 1, *HW1), HW2]) # 1 channel attrs.append([(1, 3, *HW2), HW1]) # 3 channels attrs.append([(1, 1, *HW2), HW1]) # 1 channel config = op_bench.config_list( attr_names=["input_size", "output_size"], attrs=attrs, cross_product_configs={ 'channels_last': [True], 'mode': ["linear", "nearest", "nearest-exact"], 'dtype': [torch.float, torch.uint8] }, tags=["short"], ) # Need to remove instances with both torch.int and linear # Note: this is naaaasty def get_mode(l): for d in l: if "mode" in d: return d["mode"] def get_dtype(l): for d in l: if "dtype" in d: return d["dtype"] config = [l for l in config if not(get_mode(l) == "linear" and get_dtype(l) == torch.uint8)] return config config = make_config() op_bench.generate_pt_test(config, InterpolateBenchmark) if __name__ == "__main__": op_bench.benchmark_runner.main() ``` with ``` for num_threads in 1 2 12 32; do echo "num_threads=$num_threads" && python -m pt.my_interpolate_test --iterations 1000 --omp_num_threads $num_threads ; done > $out_file ``` and this very ugly helper ```py import re with open("main") as f: main = f.readlines() with open("new") as f: new = f.readlines() out = [] for main_line, new_line in zip(main, new): if main_line.startswith("num_threads="): num_threads = int(main_line.split("=")[-1]) if main_line.startswith("# Input"): deets = f"{main_line.strip()}, {num_threads=}" if main_line.startswith("Forward"): main_time = float(main_line.split()[-1]) new_time = float(new_line.split()[-1]) ratio = main_time / new_time fmt = ".1f" if ratio < 3 else ".0f" improv = f"{ratio:{fmt}}X" time_fmt = ",.3f" if new_time < 100 else ",.1f" deets = deets.strip().replace("# Input: ", "") deets = deets.replace(": ", "=") deets = deets.replace("input_size=", "") deets = deets.replace(", output_size=", " -> ") deets = deets.replace("dtype=torch.", "") deets = deets.replace("mode=", "") deets = deets.replace("channels_last=True, ", "") split = deets.split(",") size = ','.join(split[:-3]) mode, dtype, threads = split[-3:] deets = f"{size:<30} {mode:<15} {dtype:<10} {threads:<15}" l = f"{deets} {improv:<5} {main_time / 1000:{time_fmt}}ms vs {new_time / 1000:{time_fmt}}ms" out.append(l) def key(s): # s = ''.join(s.split()[1:]) # remove "N.nX" part num_threads = (int(re.findall(r"num_threads=(\d+)", s)[0]),) input_shape, output_shape = re.findall("\(.*?\)", s) input_shape = input_shape[1:-1] # remove parenthesis input_HW = tuple(int(x) for x in input_shape.split(",")[-2:]) input_C = (-int(input_shape.split(",")[1]),) output_HW = tuple(int(x) for x in output_shape[1:-1].split(",")) is_downsample = (output_HW[0] < input_HW[0],) if "linear" in s: mode = "linear" elif "nearest-exact" in s: mode = "nearest-exact" else: assert "nearest" in s mode = "nearest" mode = (mode,) return is_downsample + input_HW + output_HW + num_threads + input_C + mode for i, l in enumerate(sorted(out, key=key)): if i % 10 == 0 and i % 40 != 0: print() if i % 40 == 0: print("-" * 100) print(l) ``` </details> Closes #83840 When this is merged we should be able to remove some hack in vision as well pytorch/vision#6661 (CC @vfdev-5 @datumbox ) Pull Request resolved: #86361 Approved by: https://github.com/vfdev-5, https://github.com/datumbox, https://github.com/fmassa
Benchmarks:
Main (Feature vs PIL)
This PR (Feature vs PIL)
Code:
Using this hack we can reduce slowdown on segmentation dataaug pipeline (PIL seg mask vs features.Mask) from x10 to x2 :