Skip to content

port RandomShortestSize from detection references to prototype transforms #6418

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Aug 16, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 45 additions & 0 deletions test/test_prototype_transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -1164,3 +1164,48 @@ def test__transform(self, mocker):
transform(inpt_sentinel)

mock.assert_called_once_with(inpt_sentinel, size=size_sentinel, interpolation=interpolation_sentinel)


class TestRandomShortestSize:
def test__get_params(self, mocker):
image_size = (3, 10)
min_size = [5, 9]
max_size = 20

transform = transforms.RandomShortestSize(min_size=min_size, max_size=max_size)

sample = mocker.MagicMock(spec=features.Image, num_channels=3, image_size=image_size)
params = transform._get_params(sample)

assert "size" in params
size = params["size"]

assert isinstance(size, tuple) and len(size) == 2

longer = max(size)
assert longer <= max_size

shorter = min(size)
if longer == max_size:
assert shorter <= max_size
else:
assert shorter in min_size

def test__transform(self, mocker):
interpolation_sentinel = mocker.MagicMock()

transform = transforms.RandomShortestSize(min_size=[3, 5, 7], max_size=12, interpolation=interpolation_sentinel)
transform._transformed_types = (mocker.MagicMock,)

size_sentinel = mocker.MagicMock()
mocker.patch(
"torchvision.prototype.transforms._geometry.RandomShortestSize._get_params",
return_value=dict(size=size_sentinel),
)

inpt_sentinel = mocker.MagicMock()

mock = mocker.patch("torchvision.prototype.transforms._geometry.F.resize")
transform(inpt_sentinel)

mock.assert_called_once_with(inpt_sentinel, size=size_sentinel, interpolation=interpolation_sentinel)
1 change: 1 addition & 0 deletions torchvision/prototype/transforms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
RandomPerspective,
RandomResizedCrop,
RandomRotation,
RandomShortestSize,
RandomVerticalFlip,
RandomZoomOut,
Resize,
Expand Down
28 changes: 28 additions & 0 deletions torchvision/prototype/transforms/_geometry.py
Original file line number Diff line number Diff line change
Expand Up @@ -644,3 +644,31 @@ def _get_params(self, sample: Any) -> Dict[str, Any]:

def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
return F.resize(inpt, size=params["size"], interpolation=self.interpolation)


class RandomShortestSize(Transform):
def __init__(
self,
min_size: Union[List[int], Tuple[int], int],
max_size: int,
interpolation: InterpolationMode = InterpolationMode.BILINEAR,
):
super().__init__()
self.min_size = [min_size] if isinstance(min_size, int) else list(min_size)
self.max_size = max_size
self.interpolation = interpolation

def _get_params(self, sample: Any) -> Dict[str, Any]:
image = query_image(sample)
_, orig_height, orig_width = get_image_dimensions(image)

min_size = self.min_size[int(torch.randint(len(self.min_size), ()))]
r = min(min_size / min(orig_height, orig_width), self.max_size / max(orig_height, orig_width))

new_width = int(orig_width * r)
new_height = int(orig_height * r)

return dict(size=(new_height, new_width))

def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
return F.resize(inpt, size=params["size"], interpolation=self.interpolation)