Skip to content

Adding FixedSizeCrop transform #5607

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Mar 14, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
75 changes: 75 additions & 0 deletions references/detection/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -326,3 +326,78 @@ def forward(
)

return image, target


class FixedSizeCrop(nn.Module):
def __init__(self, size, fill=0, padding_mode="constant"):
super().__init__()
size = tuple(T._setup_size(size, error_msg="Please provide only two dimensions (h, w) for size."))
self.crop_height = size[0]
self.crop_width = size[1]
self.fill = fill # TODO: Fill is currently respected only on PIL. Apply tensor patch.
self.padding_mode = padding_mode

def _pad(self, img, target, padding):
# Taken from the functional_tensor.py pad
if isinstance(padding, int):
pad_left = pad_right = pad_top = pad_bottom = padding
elif len(padding) == 1:
pad_left = pad_right = pad_top = pad_bottom = padding[0]
elif len(padding) == 2:
pad_left = pad_right = padding[0]
pad_top = pad_bottom = padding[1]
else:
pad_left = padding[0]
pad_top = padding[1]
pad_right = padding[2]
pad_bottom = padding[3]

padding = [pad_left, pad_top, pad_right, pad_bottom]
img = F.pad(img, padding, self.fill, self.padding_mode)
if target is not None:
target["boxes"][:, 0::2] += pad_left
target["boxes"][:, 1::2] += pad_top
if "masks" in target:
target["masks"] = F.pad(target["masks"], padding, 0, "constant")

return img, target

def _crop(self, img, target, top, left, height, width):
img = F.crop(img, top, left, height, width)
if target is not None:
boxes = target["boxes"]
boxes[:, 0::2] -= left
boxes[:, 1::2] -= top
boxes[:, 0::2].clamp_(min=0, max=width)
boxes[:, 1::2].clamp_(min=0, max=height)

is_valid = (boxes[:, 0] < boxes[:, 2]) & (boxes[:, 1] < boxes[:, 3])

target["boxes"] = boxes[is_valid]
target["labels"] = target["labels"][is_valid]
if "masks" in target:
target["masks"] = F.crop(target["masks"][is_valid], top, left, height, width)

return img, target

def forward(self, img, target=None):
_, height, width = F.get_dimensions(img)
new_height = min(height, self.crop_height)
new_width = min(width, self.crop_width)

if new_height != height or new_width != width:
offset_height = max(height - self.crop_height, 0)
offset_width = max(width - self.crop_width, 0)

r = torch.rand(1)
top = int(offset_height * r)
left = int(offset_width * r)

img, target = self._crop(img, target, top, left, new_height, new_width)

pad_bottom = max(self.crop_height - new_height, 0)
pad_right = max(self.crop_width - new_width, 0)
if pad_bottom != 0 or pad_right != 0:
img, target = self._pad(img, target, [0, 0, pad_right, pad_bottom])

return img, target