Skip to content

Add a generic test for the datasets #1015

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jun 15, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion test/fakedata_generation.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ def _make_image_file(filename, num_images):
f.write(img.numpy().tobytes())

def _make_label_file(filename, num_images):
labels = torch.randint(0, 10, size=(num_images,), dtype=torch.uint8)
labels = torch.zeros((num_images,), dtype=torch.uint8)
with open(filename, "wb") as f:
f.write(_encode(2049)) # magic header
f.write(_encode(num_images))
Expand Down
57 changes: 22 additions & 35 deletions test/test_datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,12 @@


class Tester(unittest.TestCase):
def generic_classification_dataset_test(self, dataset, num_images=1):
self.assertEqual(len(dataset), num_images)
img, target = dataset[0]
self.assertTrue(isinstance(img, PIL.Image.Image))
self.assertTrue(isinstance(target, int))

def test_imagefolder(self):
# TODO: create the fake data on-the-fly
FAKEDATA_DIR = get_file_path_2(
Expand Down Expand Up @@ -64,47 +70,36 @@ def test_mnist(self, mock_download_extract):
num_examples = 30
with mnist_root(num_examples, "MNIST") as root:
dataset = torchvision.datasets.MNIST(root, download=True)
self.assertEqual(len(dataset), num_examples)
self.generic_classification_dataset_test(dataset, num_images=num_examples)
img, target = dataset[0]
self.assertTrue(isinstance(img, PIL.Image.Image))
self.assertTrue(isinstance(target, int))
self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)

@mock.patch('torchvision.datasets.mnist.download_and_extract_archive')
def test_kmnist(self, mock_download_extract):
num_examples = 30
with mnist_root(num_examples, "KMNIST") as root:
dataset = torchvision.datasets.KMNIST(root, download=True)
self.generic_classification_dataset_test(dataset, num_images=num_examples)
img, target = dataset[0]
self.assertEqual(len(dataset), num_examples)
self.assertTrue(isinstance(img, PIL.Image.Image))
self.assertTrue(isinstance(target, int))
self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)

@mock.patch('torchvision.datasets.mnist.download_and_extract_archive')
def test_fashionmnist(self, mock_download_extract):
num_examples = 30
with mnist_root(num_examples, "FashionMNIST") as root:
dataset = torchvision.datasets.FashionMNIST(root, download=True)
self.generic_classification_dataset_test(dataset, num_images=num_examples)
img, target = dataset[0]
self.assertEqual(len(dataset), num_examples)
self.assertTrue(isinstance(img, PIL.Image.Image))
self.assertTrue(isinstance(target, int))
self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)

@mock.patch('torchvision.datasets.utils.download_url')
def test_imagenet(self, mock_download):
with imagenet_root() as root:
dataset = torchvision.datasets.ImageNet(root, split='train', download=True)
self.assertEqual(len(dataset), 1)
img, target = dataset[0]
self.assertTrue(isinstance(img, PIL.Image.Image))
self.assertTrue(isinstance(target, int))
self.assertEqual(dataset.class_to_idx['fakedata'], target)
self.generic_classification_dataset_test(dataset)

dataset = torchvision.datasets.ImageNet(root, split='val', download=True)
self.assertEqual(len(dataset), 1)
img, target = dataset[0]
self.assertTrue(isinstance(img, PIL.Image.Image))
self.assertTrue(isinstance(target, int))
self.assertEqual(dataset.class_to_idx['fakedata'], target)
self.generic_classification_dataset_test(dataset)

@mock.patch('torchvision.datasets.cifar.check_integrity')
@mock.patch('torchvision.datasets.cifar.CIFAR10._check_integrity')
Expand All @@ -113,18 +108,14 @@ def test_cifar10(self, mock_ext_check, mock_int_check):
mock_int_check.return_value = True
with cifar_root('CIFAR10') as root:
dataset = torchvision.datasets.CIFAR10(root, train=True, download=True)
self.assertEqual(len(dataset), 5)
self.generic_classification_dataset_test(dataset, num_images=5)
img, target = dataset[0]
self.assertTrue(isinstance(img, PIL.Image.Image))
self.assertTrue(isinstance(target, int))
self.assertEqual(dataset.class_to_idx['fakedata'], target)
self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)

dataset = torchvision.datasets.CIFAR10(root, train=False, download=True)
self.assertEqual(len(dataset), 1)
self.generic_classification_dataset_test(dataset)
img, target = dataset[0]
self.assertTrue(isinstance(img, PIL.Image.Image))
self.assertTrue(isinstance(target, int))
self.assertEqual(dataset.class_to_idx['fakedata'], target)
self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)

@mock.patch('torchvision.datasets.cifar.check_integrity')
@mock.patch('torchvision.datasets.cifar.CIFAR10._check_integrity')
Expand All @@ -133,18 +124,14 @@ def test_cifar100(self, mock_ext_check, mock_int_check):
mock_int_check.return_value = True
with cifar_root('CIFAR100') as root:
dataset = torchvision.datasets.CIFAR100(root, train=True, download=True)
self.assertEqual(len(dataset), 1)
self.generic_classification_dataset_test(dataset)
img, target = dataset[0]
self.assertTrue(isinstance(img, PIL.Image.Image))
self.assertTrue(isinstance(target, int))
self.assertEqual(dataset.class_to_idx['fakedata'], target)
self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)

dataset = torchvision.datasets.CIFAR100(root, train=False, download=True)
self.assertEqual(len(dataset), 1)
self.generic_classification_dataset_test(dataset)
img, target = dataset[0]
self.assertTrue(isinstance(img, PIL.Image.Image))
self.assertTrue(isinstance(target, int))
self.assertEqual(dataset.class_to_idx['fakedata'], target)
self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)


if __name__ == '__main__':
Expand Down