Skip to content

Some fixes for the dynamic memory setting #3729

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jul 29, 2025

Conversation

narendasan
Copy link
Collaborator

Description

Allows the allocation strategy to be set at build time, fixes some of the mode switching and cleans up some naming

Fixes # (issue)

Type of change

Please delete options that are not relevant and/or add your own.

  • Bug fix (non-breaking change which fixes an issue)

Checklist:

  • My code follows the style guidelines of this project (You can use the linters)
  • I have performed a self-review of my own code
  • I have commented my code, particularly in hard-to-understand areas and hacks
  • I have made corresponding changes to the documentation
  • I have added tests to verify my fix or my feature
  • New and existing unit tests pass locally with my changes
  • I have added the relevant labels to my PR in so that relevant reviewers are notified

@meta-cla meta-cla bot added the cla signed label Jul 29, 2025
@github-actions github-actions bot added component: core Issues re: The core compiler component: api [Python] Issues re: Python API component: runtime component: dynamo Issues relating to the `torch.compile` or `torch._dynamo.export` paths labels Jul 29, 2025
@github-actions github-actions bot requested a review from peri044 July 29, 2025 22:58
@narendasan narendasan changed the base branch from dynamic_allocate to dynamic-allocation July 29, 2025 22:59
Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to C++ style guidelines:

diff --git a/home/runner/work/TensorRT/TensorRT/core/runtime/register_jit_hooks.cpp b/tmp/changes.txt
index 6d15bd8..b6f2d5b 100644
--- a/home/runner/work/TensorRT/TensorRT/core/runtime/register_jit_hooks.cpp
+++ b/tmp/changes.txt
@@ -109,7 +109,10 @@ static auto TORCHTRT_UNUSED TRTEngineTSRegistrtion =
            [](const c10::intrusive_ptr<TRTEngine>& self) -> std::vector<std::string> { return self->serialize(); },
            [](std::vector<std::string> serialized_info) -> c10::intrusive_ptr<TRTEngine> {
              serialized_info[ENGINE_IDX] = base64_decode(serialized_info[ENGINE_IDX]);
-              LOG_DEBUG("Deserialized resource allocation strategy: " << (static_cast<bool>(std::stoi(serialized_info[RESOURCE_ALLOCATION_STRATEGY_IDX])) ? "Dynamic" : "Static"));
+              LOG_DEBUG(
+                  "Deserialized resource allocation strategy: "
+                  << (static_cast<bool>(std::stoi(serialized_info[RESOURCE_ALLOCATION_STRATEGY_IDX])) ? "Dynamic"
+                                                                                                      : "Static"));
              TRTEngine::verify_serialization_fmt(serialized_info);
              return c10::make_intrusive<TRTEngine>(serialized_info);
            });
diff --git a/home/runner/work/TensorRT/TensorRT/core/runtime/TRTEngine.cpp b/tmp/changes.txt
index 253738b..de70331 100644
--- a/home/runner/work/TensorRT/TensorRT/core/runtime/TRTEngine.cpp
+++ b/tmp/changes.txt
@@ -86,7 +86,9 @@ TRTEngine::TRTEngine(std::vector<std::string> serialized_info)
          static_cast<bool>(std::stoi(serialized_info[HW_COMPATIBLE_IDX])),
          static_cast<bool>(std::stoi(serialized_info[REQUIRES_OUTPUT_ALLOCATOR_IDX])),
          serialized_info[SERIALIZED_METADATA_IDX],
-          (static_cast<bool>(std::stoi(serialized_info[RESOURCE_ALLOCATION_STRATEGY_IDX])) ? ResourceAllocationStrategy::kDynamic : ResourceAllocationStrategy::kStatic)) {}
+          (static_cast<bool>(std::stoi(serialized_info[RESOURCE_ALLOCATION_STRATEGY_IDX]))
+               ? ResourceAllocationStrategy::kDynamic
+               : ResourceAllocationStrategy::kStatic)) {}

TRTEngine::TRTEngine(
    const std::string& mod_name,
@@ -129,7 +131,9 @@ TRTEngine::TRTEngine(
  }

  this->resource_allocation_strategy = resource_allocation_strategy;
-  LOG_DEBUG("Resource allocation strategy: " << (this->resource_allocation_strategy == ResourceAllocationStrategy::kDynamic ? "Dynamic" : "Static"));
+  LOG_DEBUG(
+      "Resource allocation strategy: "
+      << (this->resource_allocation_strategy == ResourceAllocationStrategy::kDynamic ? "Dynamic" : "Static"));
  if (this->resource_allocation_strategy == ResourceAllocationStrategy::kDynamic) {
    this->exec_ctx =
        make_trt(cuda_engine->createExecutionContext(nvinfer1::ExecutionContextAllocationStrategy::kUSER_MANAGED));
@@ -472,7 +476,8 @@ std::vector<std::string> TRTEngine::serialize() {
  serialized_info[REQUIRES_OUTPUT_ALLOCATOR_IDX] = this->requires_output_allocator ? "1" : "0";
  serialized_info[SERIALIZED_METADATA_IDX] = this->serialized_metadata;
  serialized_info[TARGET_PLATFORM_IDX] = this->target_platform.serialize();
-  serialized_info[RESOURCE_ALLOCATION_STRATEGY_IDX] = this->resource_allocation_strategy == ResourceAllocationStrategy::kDynamic ? "1" : "0";
+  serialized_info[RESOURCE_ALLOCATION_STRATEGY_IDX] =
+      this->resource_allocation_strategy == ResourceAllocationStrategy::kDynamic ? "1" : "0";

  return serialized_info;
}
@@ -486,11 +491,11 @@ void TRTEngine::set_resource_allocation_strategy(TRTEngine::ResourceAllocationSt
    this->resource_allocation_strategy = new_strategy;
    if (this->resource_allocation_strategy == TRTEngine::ResourceAllocationStrategy::kDynamic) {
      LOG_DEBUG("Setting resource allocation strategy to dynamic");
-      this->exec_ctx = make_trt(cuda_engine->createExecutionContext(nvinfer1::ExecutionContextAllocationStrategy::kUSER_MANAGED));
+      this->exec_ctx =
+          make_trt(cuda_engine->createExecutionContext(nvinfer1::ExecutionContextAllocationStrategy::kUSER_MANAGED));
    } else {
      LOG_DEBUG("Setting resource allocation strategy to static");
-      this->exec_ctx = make_trt(
-          cuda_engine->createExecutionContext());
+      this->exec_ctx = make_trt(cuda_engine->createExecutionContext());
    }
  }
}
ERROR: Some files do not conform to style guidelines

Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to Python style guidelines:

--- /home/runner/work/TensorRT/TensorRT/examples/dynamo/dynamic_memory_allocation.py	2025-07-29 23:09:46.508169+00:00
+++ /home/runner/work/TensorRT/TensorRT/examples/dynamo/dynamic_memory_allocation.py	2025-07-29 23:10:09.855773+00:00
@@ -14,21 +14,22 @@
    "ir": "dynamo",
    "use_python_runtime": False,
    "enabled_precisions": {torch.float32},
    "immutable_weights": False,
    "lazy_engine_init": True,
-    "dynamically_allocate_resources": True
-
+    "dynamically_allocate_resources": True,
}

model = models.resnet152(pretrained=True).eval().to("cuda")
compiled_module = torch_trt.compile(model, inputs=inputs, **settings)
print((torch.cuda.mem_get_info()[1] - torch.cuda.mem_get_info()[0]) / 1024**3)
compiled_module(*inputs)

time.sleep(30)
-with torch_trt.dynamo.runtime.ResourceAllocationStrategy(compiled_module, dynamically_allocate_resources=False):
+with torch_trt.dynamo.runtime.ResourceAllocationStrategy(
+    compiled_module, dynamically_allocate_resources=False
+):
    print(
        "Memory used (GB):",
        (torch.cuda.mem_get_info()[1] - torch.cuda.mem_get_info()[0]) / 1024**3,
    )
    compiled_module(*inputs)
--- /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/runtime/_ResourceAllocator.py	2025-07-29 23:09:46.525169+00:00
+++ /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/runtime/_ResourceAllocator.py	2025-07-29 23:10:11.748306+00:00
@@ -12,21 +12,25 @@
    """

    def __init__(
        self,
        compiled_module: torch.nn.Module,
-        dynamically_allocate_resources: bool = True
+        dynamically_allocate_resources: bool = True,
    ) -> None:
        super(ResourceAllocationStrategy, self).__init__()
        self.compiled_module = compiled_module
        self.dynamically_allocate_resources = dynamically_allocate_resources

    def __enter__(self) -> None:
        print("Entering resource allocator context")
        for name, submodule in self.compiled_module.named_modules():
            if "_run_on_acc" in name:
-                submodule.use_dynamically_allocated_resources(dynamically_allocate_resources=self.dynamically_allocate_resources)
+                submodule.use_dynamically_allocated_resources(
+                    dynamically_allocate_resources=self.dynamically_allocate_resources
+                )

    def __exit__(self, exc_type: Any, exc_value: Any, exc_tb: Any) -> None:
        for name, submodule in self.compiled_module.named_modules():
            if "_run_on_acc" in name:
-                submodule.use_dynamically_allocated_resources(dynamically_allocate_resources=self.dynamically_allocate_resources)
+                submodule.use_dynamically_allocated_resources(
+                    dynamically_allocate_resources=self.dynamically_allocate_resources
+                )
--- /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/runtime/_TorchTensorRTModule.py	2025-07-29 23:09:46.525169+00:00
+++ /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/runtime/_TorchTensorRTModule.py	2025-07-29 23:10:12.090030+00:00
@@ -186,11 +186,13 @@
        engine_info[SERIALIZED_METADATA_IDX] = self.encode_metadata(metadata)
        engine_info[TARGET_PLATFORM_IDX] = target_platform._to_serialized_rt_platform()
        engine_info[REQUIRES_OUTPUT_ALLOCATOR_IDX] = str(
            int(self.requires_output_allocator)
        )
-        print(f"PROVIDED RESOURCE ALLOCATION STRATEGY: {self.dynamically_allocate_resources}")
+        print(
+            f"PROVIDED RESOURCE ALLOCATION STRATEGY: {self.dynamically_allocate_resources}"
+        )
        engine_info[RESOURCE_ALLOCATION_STRATEGY_IDX] = str(
            int(self.dynamically_allocate_resources)
        )
        print(engine_info[RESOURCE_ALLOCATION_STRATEGY_IDX])

@@ -219,13 +221,17 @@
        return budget_bytes

    def _reset_captured_graph(self) -> None:
        self.engine.reset_captured_graph()

-    def use_dynamically_allocated_resources(self, dynamically_allocate_resources: bool = False) -> None:
+    def use_dynamically_allocated_resources(
+        self, dynamically_allocate_resources: bool = False
+    ) -> None:
        self.dynamically_allocate_resources = dynamically_allocate_resources
-        self.engine.use_dynamically_allocated_resources(self.dynamically_allocate_resources)
+        self.engine.use_dynamically_allocated_resources(
+            self.dynamically_allocate_resources
+        )

    def setup_engine(self) -> None:
        """
        Setup engine for a module which has deferred engine setup.

@cehongwang cehongwang merged commit 50678a5 into dynamic-allocation Jul 29, 2025
52 of 55 checks passed
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
cla signed component: api [Python] Issues re: Python API component: core Issues re: The core compiler component: dynamo Issues relating to the `torch.compile` or `torch._dynamo.export` paths component: runtime
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants