Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions py/torch_tensorrt/dynamo/conversion/aten_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -1136,6 +1136,23 @@ def aten_ops_exp(
)


@dynamo_tensorrt_converter(torch.ops.aten.expm1.default)
def aten_ops_expm1(
ctx: ConversionContext,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
return impl.unary.expm1(
ctx,
target,
SourceIR.ATEN,
name,
args[0],
)


@dynamo_tensorrt_converter(torch.ops.aten.log.default)
def aten_ops_log(
ctx: ConversionContext,
Expand Down
26 changes: 26 additions & 0 deletions py/torch_tensorrt/dynamo/conversion/impl/unary/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,32 @@ def exp(
)


def expm1(
ctx: ConversionContext,
target: Target,
source_ir: Optional[SourceIR],
name: str,
input_val: TRTTensor,
) -> TRTTensor:
"""
Computes e^x - 1 for each element of the input tensor.

Args:
ctx (ConversionContext): TensorRT ConversionContext object.
target (Target): fx node target.
source_ir (SourceIR): Source IR calling the function
name (str): Name of the fx node with optional suffix.
input_val (TRTTensor): The input tensor.

Returns:
TRTTensor: A TensorRT tensor represent the result of expm1 operator.
"""
# Compute e^x for each element of the input tensor
exp_result = exp(ctx, target, source_ir, f"{name}_exp", input_val)

return impl.elementwise.sub(ctx, target, source_ir, f"{name}_sub", exp_result, 1)


def log(
ctx: ConversionContext,
target: Target,
Expand Down
69 changes: 69 additions & 0 deletions tests/py/dynamo/conversion/test_expm1_aten.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
from math import exp

import torch
import torch.nn as nn
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests

from .harness import DispatchTestCase


class TestExpConverter(DispatchTestCase):
@parameterized.expand(
[
((10,), torch.float),
((1, 20), torch.float),
((2, 3, 4), torch.float),
((2, 3, 4, 5), torch.float),
]
)
def test_expm1_float(self, input_shape, dtype):
class expm1(nn.Module):
def forward(self, input):
return torch.ops.aten.expm1.default(input)

inputs = [torch.randn(input_shape, dtype=dtype)]
self.run_test(
expm1(),
inputs,
)

@parameterized.expand(
[
(torch.full((1, 20), exp(1), dtype=torch.float),),
(torch.full((2, 3, 4), exp(2), dtype=torch.float),),
(torch.full((2, 3, 4, 5), exp(3), dtype=torch.float),),
]
)
def test_expm1_exp_const_float(self, data):
class expm1(nn.Module):
def forward(self, input):
return torch.ops.aten.expm1.default(input)

inputs = [data]
self.run_test(
expm1(),
inputs,
)

@parameterized.expand(
[
((10,), torch.int, 0, 5),
((1, 20), torch.int32, -10, 10),
((2, 3, 4), torch.int, -5, 5),
]
)
def test_exp_int(self, input_shape, dtype, low, high):
class expm1(nn.Module):
def forward(self, input):
return torch.ops.aten.expm1.default(input)

inputs = [torch.randint(low, high, input_shape, dtype=dtype)]
self.run_test(
expm1(),
inputs,
)


if __name__ == "__main__":
run_tests()