Skip to content

Corrected ZeroInflatedBinomial moment and addeed ZeroInflatedNegativeBinomial moment #5206

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Nov 18, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 8 additions & 2 deletions pymc/distributions/discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -1462,7 +1462,7 @@ class ZeroInflatedBinomial(Discrete):

======== ==========================
Support :math:`x \in \mathbb{N}_0`
Mean :math:`(1 - \psi) n p`
Mean :math:`\psi n p`
Variance :math:`(1-\psi) n p [1 - p(1 - \psi n)].`
======== ==========================

Expand All @@ -1487,7 +1487,7 @@ def dist(cls, psi, n, p, *args, **kwargs):
return super().dist([psi, n, p], *args, **kwargs)

def get_moment(rv, size, psi, n, p):
mean = at.round((1 - psi) * n * p)
mean = at.round(psi * n * p)
if not rv_size_is_none(size):
mean = at.full(size, mean)
return mean
Expand Down Expand Up @@ -1650,6 +1650,12 @@ def dist(cls, psi, mu, alpha, *args, **kwargs):
p = at.as_tensor_variable(floatX(p))
return super().dist([psi, n, p], *args, **kwargs)

def get_moment(rv, size, psi, n, p):
mean = at.floor(psi * n * (1 - p) / p)
if not rv_size_is_none(size):
mean = at.full(size, mean)
return mean

def logp(value, psi, n, p):
r"""
Calculate log-probability of ZeroInflatedNegativeBinomial distribution at specified value.
Expand Down
30 changes: 26 additions & 4 deletions pymc/tests/test_distributions_moments.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,7 @@
Wald,
Weibull,
ZeroInflatedBinomial,
ZeroInflatedNegativeBinomial,
ZeroInflatedPoisson,
)
from pymc.distributions.distribution import get_moment
Expand Down Expand Up @@ -553,11 +554,11 @@ def test_zero_inflated_poisson_moment(psi, theta, size, expected):
@pytest.mark.parametrize(
"psi, n, p, size, expected",
[
(0.2, 7, 0.7, None, 4),
(0.2, 7, 0.3, 5, np.full(5, 2)),
(0.6, 25, np.arange(1, 6) / 10, None, np.arange(1, 6)),
(0.8, 7, 0.7, None, 4),
(0.8, 7, 0.3, 5, np.full(5, 2)),
(0.4, 25, np.arange(1, 6) / 10, None, np.arange(1, 6)),
(
0.6,
0.4,
25,
np.arange(1, 6) / 10,
(2, 5),
Expand Down Expand Up @@ -1052,3 +1053,24 @@ def test_polyagamma_moment(h, z, size, expected):
with Model() as model:
PolyaGamma("x", h=h, z=z, size=size)
assert_moment_is_expected(model, expected)


@pytest.mark.parametrize(
"psi, mu, alpha, size, expected",
[
(0.2, 10, 3, None, 2),
(0.2, 10, 4, 5, np.full(5, 2)),
(0.4, np.arange(1, 5), np.arange(2, 6), None, np.array([0, 0, 1, 1])),
(
np.linspace(0.2, 0.6, 3),
np.arange(1, 10, 4),
np.arange(1, 4),
(2, 3),
np.full((2, 3), np.array([0, 2, 5])),
),
],
)
def test_zero_inflated_negative_binomial_moment(psi, mu, alpha, size, expected):
with Model() as model:
ZeroInflatedNegativeBinomial("x", psi=psi, mu=mu, alpha=alpha, size=size)
assert_moment_is_expected(model, expected)