Skip to content
This repository was archived by the owner on Jul 16, 2025. It is now read-only.

feat: Add Gemini Embeddings #347

Merged
merged 1 commit into from
Jun 27, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
76 changes: 76 additions & 0 deletions examples/store/mariadb-similarity-search-gemini.php
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
<?php

use Doctrine\DBAL\DriverManager;
use Doctrine\DBAL\Tools\DsnParser;
use PhpLlm\LlmChain\Chain\Chain;
use PhpLlm\LlmChain\Chain\Toolbox\ChainProcessor;
use PhpLlm\LlmChain\Chain\Toolbox\Tool\SimilaritySearch;
use PhpLlm\LlmChain\Chain\Toolbox\Toolbox;
use PhpLlm\LlmChain\Platform\Bridge\Google\Embeddings;
use PhpLlm\LlmChain\Platform\Bridge\Google\Embeddings\TaskType;
use PhpLlm\LlmChain\Platform\Bridge\Google\Gemini;
use PhpLlm\LlmChain\Platform\Bridge\Google\PlatformFactory;
use PhpLlm\LlmChain\Platform\Message\Message;
use PhpLlm\LlmChain\Platform\Message\MessageBag;
use PhpLlm\LlmChain\Store\Bridge\MariaDB\Store;
use PhpLlm\LlmChain\Store\Document\Metadata;
use PhpLlm\LlmChain\Store\Document\TextDocument;
use PhpLlm\LlmChain\Store\Indexer;
use Symfony\Component\Dotenv\Dotenv;
use Symfony\Component\Uid\Uuid;

require_once dirname(__DIR__, 2).'/vendor/autoload.php';
(new Dotenv())->loadEnv(dirname(__DIR__, 2).'/.env');

if (empty($_ENV['GOOGLE_API_KEY']) || empty($_ENV['MARIADB_URI'])) {
echo 'Please set GOOGLE_API_KEY and MARIADB_URI environment variables.'.\PHP_EOL;
exit(1);
}

// initialize the store
$store = Store::fromDbal(
connection: DriverManager::getConnection((new DsnParser())->parse($_ENV['MARIADB_URI'])),
tableName: 'my_table',
indexName: 'my_index',
vectorFieldName: 'embedding',
);

// our data
$movies = [
['title' => 'Inception', 'description' => 'A skilled thief is given a chance at redemption if he can successfully perform inception, the act of planting an idea in someone\'s subconscious.', 'director' => 'Christopher Nolan'],
['title' => 'The Matrix', 'description' => 'A hacker discovers the world he lives in is a simulated reality and joins a rebellion to overthrow its controllers.', 'director' => 'The Wachowskis'],
['title' => 'The Godfather', 'description' => 'The aging patriarch of an organized crime dynasty transfers control of his empire to his reluctant son.', 'director' => 'Francis Ford Coppola'],
];

// create embeddings and documents
foreach ($movies as $i => $movie) {
$documents[] = new TextDocument(
id: Uuid::v4(),
content: 'Title: '.$movie['title'].\PHP_EOL.'Director: '.$movie['director'].\PHP_EOL.'Description: '.$movie['description'],
metadata: new Metadata($movie),
);
}

// initialize the table
$store->initialize(['dimensions' => 768]);

// create embeddings for documents
$platform = PlatformFactory::create($_ENV['GOOGLE_API_KEY']);
$embeddings = new Embeddings(options: ['dimensions' => 768, 'task_type' => TaskType::SemanticSimilarity]);
$indexer = new Indexer($platform, $embeddings, $store);
$indexer->index($documents);

$model = new Gemini(Gemini::GEMINI_2_FLASH_LITE);

$similaritySearch = new SimilaritySearch($platform, $embeddings, $store);
$toolbox = Toolbox::create($similaritySearch);
$processor = new ChainProcessor($toolbox);
$chain = new Chain($platform, $model, [$processor], [$processor]);

$messages = new MessageBag(
Message::forSystem('Please answer all user questions only using SimilaritySearch function.'),
Message::ofUser('Which movie fits the theme of the mafia?')
);
$response = $chain->call($messages);

echo $response->getContent().\PHP_EOL;
30 changes: 30 additions & 0 deletions src/Platform/Bridge/Google/Embeddings.php
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
<?php

declare(strict_types=1);

namespace PhpLlm\LlmChain\Platform\Bridge\Google;

use PhpLlm\LlmChain\Platform\Bridge\Google\Embeddings\TaskType;
use PhpLlm\LlmChain\Platform\Capability;
use PhpLlm\LlmChain\Platform\Model;

/**
* @author Valtteri R <[email protected]>
*/
class Embeddings extends Model
{
/** Supported dimensions: 3072, 1536, or 768 */
public const GEMINI_EMBEDDING_EXP_03_07 = 'gemini-embedding-exp-03-07';
/** Fixed 768 dimensions */
public const TEXT_EMBEDDING_004 = 'text-embedding-004';
/** Fixed 768 dimensions */
public const EMBEDDING_001 = 'embedding-001';

/**
* @param array{dimensions?: int, task_type?: TaskType|string} $options
*/
public function __construct(string $name = self::GEMINI_EMBEDDING_EXP_03_07, array $options = [])
{
parent::__construct($name, [Capability::INPUT_MULTIPLE], $options);
}
}
71 changes: 71 additions & 0 deletions src/Platform/Bridge/Google/Embeddings/ModelClient.php
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
<?php

namespace PhpLlm\LlmChain\Platform\Bridge\Google\Embeddings;

use PhpLlm\LlmChain\Platform\Bridge\Google\Embeddings;
use PhpLlm\LlmChain\Platform\Exception\RuntimeException;
use PhpLlm\LlmChain\Platform\Model;
use PhpLlm\LlmChain\Platform\ModelClientInterface;
use PhpLlm\LlmChain\Platform\Response\VectorResponse;
use PhpLlm\LlmChain\Platform\ResponseConverterInterface;
use PhpLlm\LlmChain\Platform\Vector\Vector;
use Symfony\Contracts\HttpClient\HttpClientInterface;
use Symfony\Contracts\HttpClient\ResponseInterface;

/**
* @author Valtteri R <[email protected]>
*/
final readonly class ModelClient implements ModelClientInterface, ResponseConverterInterface
{
public function __construct(
private HttpClientInterface $httpClient,
#[\SensitiveParameter]
private string $apiKey,
) {
}

public function supports(Model $model): bool
{
return $model instanceof Embeddings;
}

public function request(Model $model, array|string $payload, array $options = []): ResponseInterface
{
$url = \sprintf('https://generativelanguage.googleapis.com/v1beta/models/%s:%s', $model->getName(), 'batchEmbedContents');
$modelOptions = $model->getOptions();

return $this->httpClient->request('POST', $url, [
'headers' => [
'x-goog-api-key' => $this->apiKey,
],
'json' => [
'requests' => array_map(
static fn (string $text) => array_filter([
'model' => 'models/'.$model->getName(),
'content' => ['parts' => [['text' => $text]]],
'outputDimensionality' => $modelOptions['dimensions'] ?? null,
'taskType' => $modelOptions['task_type'] ?? null,
'title' => $options['title'] ?? null,
]),
\is_array($payload) ? $payload : [$payload],
),
],
]);
}

public function convert(ResponseInterface $response, array $options = []): VectorResponse
{
$data = $response->toArray();

if (!isset($data['embeddings'])) {
throw new RuntimeException('Response does not contain data');
}

return new VectorResponse(
...array_map(
static fn (array $item): Vector => new Vector($item['values']),
$data['embeddings'],
),
);
}
}
25 changes: 25 additions & 0 deletions src/Platform/Bridge/Google/Embeddings/TaskType.php
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
<?php

namespace PhpLlm\LlmChain\Platform\Bridge\Google\Embeddings;

enum TaskType: string
{
/** Unset value, which will default to one of the other enum values. */
public const TaskTypeUnspecified = 'TASK_TYPE_UNSPECIFIED';
/** Specifies the given text is a query in a search/retrieval setting. */
public const RetrievalQuery = 'RETRIEVAL_QUERY';
/** Specifies the given text is a document from the corpus being searched. */
public const RetrievalDocument = 'RETRIEVAL_DOCUMENT';
/** Specifies the given text will be used for STS. */
public const SemanticSimilarity = 'SEMANTIC_SIMILARITY';
/** Specifies that the given text will be classified. */
public const Classification = 'CLASSIFICATION';
/** Specifies that the embeddings will be used for clustering. */
public const Clustering = 'CLUSTERING';
/** Specifies that the given text will be used for question answering. */
public const QuestionAnswering = 'QUESTION_ANSWERING';
/** Specifies that the given text will be used for fact verification. */
public const FactVerification = 'FACT_VERIFICATION';
/** Specifies that the given text will be used for code retrieval. */
public const CodeRetrievalQuery = 'CODE_RETRIEVAL_QUERY';
}
4 changes: 3 additions & 1 deletion src/Platform/Bridge/Google/PlatformFactory.php
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
use PhpLlm\LlmChain\Platform\Bridge\Google\Contract\ToolCallMessageNormalizer;
use PhpLlm\LlmChain\Platform\Bridge\Google\Contract\ToolNormalizer;
use PhpLlm\LlmChain\Platform\Bridge\Google\Contract\UserMessageNormalizer;
use PhpLlm\LlmChain\Platform\Bridge\Google\Embeddings\ModelClient;
use PhpLlm\LlmChain\Platform\Contract;
use PhpLlm\LlmChain\Platform\Platform;
use Symfony\Component\HttpClient\EventSourceHttpClient;
Expand All @@ -26,8 +27,9 @@ public static function create(
): Platform {
$httpClient = $httpClient instanceof EventSourceHttpClient ? $httpClient : new EventSourceHttpClient($httpClient);
$responseHandler = new ModelHandler($httpClient, $apiKey);
$embeddings = new ModelClient($httpClient, $apiKey);

return new Platform([$responseHandler], [$responseHandler], Contract::create(
return new Platform([$responseHandler, $embeddings], [$responseHandler, $embeddings], Contract::create(
new AssistantMessageNormalizer(),
new MessageBagNormalizer(),
new ToolNormalizer(),
Expand Down
4 changes: 2 additions & 2 deletions src/Platform/ModelClientInterface.php
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,8 @@ interface ModelClientInterface
public function supports(Model $model): bool;

/**
* @param array<string, mixed> $payload
* @param array<string, mixed> $options
* @param array<string|int, mixed> $payload
* @param array<string, mixed> $options
*/
public function request(Model $model, array|string $payload, array $options = []): ResponseInterface;
}
102 changes: 102 additions & 0 deletions tests/Platform/Bridge/Google/Embeddings/EmbeddingsModelClientTest.php
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
<?php

declare(strict_types=1);

namespace PhpLlm\LlmChain\Tests\Platform\Bridge\Google\Embeddings;

use PhpLlm\LlmChain\Platform\Bridge\Google\Embeddings;
use PhpLlm\LlmChain\Platform\Bridge\Google\Embeddings\ModelClient;
use PhpLlm\LlmChain\Platform\Response\VectorResponse;
use PhpLlm\LlmChain\Platform\Vector\Vector;
use PHPUnit\Framework\Attributes\CoversClass;
use PHPUnit\Framework\Attributes\Small;
use PHPUnit\Framework\Attributes\Test;
use PHPUnit\Framework\Attributes\UsesClass;
use PHPUnit\Framework\TestCase;
use Symfony\Contracts\HttpClient\HttpClientInterface;
use Symfony\Contracts\HttpClient\ResponseInterface;

#[CoversClass(ModelClient::class)]
#[Small]
#[UsesClass(Vector::class)]
#[UsesClass(VectorResponse::class)]
#[UsesClass(Embeddings::class)]
final class EmbeddingsModelClientTest extends TestCase
{
#[Test]
public function itMakesARequestWithCorrectPayload(): void
{
$response = $this->createStub(ResponseInterface::class);
$response
->method('toArray')
->willReturn(json_decode($this->getEmbeddingStub(), true));

$httpClient = self::createMock(HttpClientInterface::class);
$httpClient->expects(self::once())
->method('request')
->with(
'POST',
'https://generativelanguage.googleapis.com/v1beta/models/gemini-embedding-exp-03-07:batchEmbedContents',
[
'headers' => ['x-goog-api-key' => 'test'],
'json' => [
'requests' => [
[
'model' => 'models/gemini-embedding-exp-03-07',
'content' => ['parts' => [['text' => 'payload1']]],
'outputDimensionality' => 1536,
'taskType' => 'CLASSIFICATION',
],
[
'model' => 'models/gemini-embedding-exp-03-07',
'content' => ['parts' => [['text' => 'payload2']]],
'outputDimensionality' => 1536,
'taskType' => 'CLASSIFICATION',
],
],
],
],
)
->willReturn($response);

$model = new Embeddings(Embeddings::GEMINI_EMBEDDING_EXP_03_07, ['dimensions' => 1536, 'task_type' => 'CLASSIFICATION']);

$httpResponse = (new ModelClient($httpClient, 'test'))->request($model, ['payload1', 'payload2']);
self::assertSame(json_decode($this->getEmbeddingStub(), true), $httpResponse->toArray());
}

#[Test]
public function itConvertsAResponseToAVectorResponse(): void
{
$response = $this->createStub(ResponseInterface::class);
$response
->method('toArray')
->willReturn(json_decode($this->getEmbeddingStub(), true));

$httpClient = self::createMock(HttpClientInterface::class);

$vectorResponse = (new ModelClient($httpClient, 'test'))->convert($response);
$convertedContent = $vectorResponse->getContent();

self::assertCount(2, $convertedContent);

self::assertSame([0.3, 0.4, 0.4], $convertedContent[0]->getData());
self::assertSame([0.0, 0.0, 0.2], $convertedContent[1]->getData());
}

private function getEmbeddingStub(): string
{
return <<<'JSON'
{
"embeddings": [
{
"values": [0.3, 0.4, 0.4]
},
{
"values": [0.0, 0.0, 0.2]
}
]
}
JSON;
}
}