This repository was archived by the owner on Jul 16, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 24
feat: Add Gemini Embeddings #347
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
<?php | ||
|
||
use Doctrine\DBAL\DriverManager; | ||
use Doctrine\DBAL\Tools\DsnParser; | ||
use PhpLlm\LlmChain\Chain\Chain; | ||
use PhpLlm\LlmChain\Chain\Toolbox\ChainProcessor; | ||
use PhpLlm\LlmChain\Chain\Toolbox\Tool\SimilaritySearch; | ||
use PhpLlm\LlmChain\Chain\Toolbox\Toolbox; | ||
use PhpLlm\LlmChain\Platform\Bridge\Google\Embeddings; | ||
use PhpLlm\LlmChain\Platform\Bridge\Google\Embeddings\TaskType; | ||
use PhpLlm\LlmChain\Platform\Bridge\Google\Gemini; | ||
use PhpLlm\LlmChain\Platform\Bridge\Google\PlatformFactory; | ||
use PhpLlm\LlmChain\Platform\Message\Message; | ||
use PhpLlm\LlmChain\Platform\Message\MessageBag; | ||
use PhpLlm\LlmChain\Store\Bridge\MariaDB\Store; | ||
use PhpLlm\LlmChain\Store\Document\Metadata; | ||
use PhpLlm\LlmChain\Store\Document\TextDocument; | ||
use PhpLlm\LlmChain\Store\Indexer; | ||
use Symfony\Component\Dotenv\Dotenv; | ||
use Symfony\Component\Uid\Uuid; | ||
|
||
require_once dirname(__DIR__, 2).'/vendor/autoload.php'; | ||
(new Dotenv())->loadEnv(dirname(__DIR__, 2).'/.env'); | ||
|
||
if (empty($_ENV['GOOGLE_API_KEY']) || empty($_ENV['MARIADB_URI'])) { | ||
echo 'Please set GOOGLE_API_KEY and MARIADB_URI environment variables.'.\PHP_EOL; | ||
exit(1); | ||
} | ||
|
||
// initialize the store | ||
$store = Store::fromDbal( | ||
connection: DriverManager::getConnection((new DsnParser())->parse($_ENV['MARIADB_URI'])), | ||
tableName: 'my_table', | ||
indexName: 'my_index', | ||
vectorFieldName: 'embedding', | ||
); | ||
|
||
// our data | ||
$movies = [ | ||
['title' => 'Inception', 'description' => 'A skilled thief is given a chance at redemption if he can successfully perform inception, the act of planting an idea in someone\'s subconscious.', 'director' => 'Christopher Nolan'], | ||
['title' => 'The Matrix', 'description' => 'A hacker discovers the world he lives in is a simulated reality and joins a rebellion to overthrow its controllers.', 'director' => 'The Wachowskis'], | ||
['title' => 'The Godfather', 'description' => 'The aging patriarch of an organized crime dynasty transfers control of his empire to his reluctant son.', 'director' => 'Francis Ford Coppola'], | ||
]; | ||
|
||
// create embeddings and documents | ||
foreach ($movies as $i => $movie) { | ||
$documents[] = new TextDocument( | ||
id: Uuid::v4(), | ||
content: 'Title: '.$movie['title'].\PHP_EOL.'Director: '.$movie['director'].\PHP_EOL.'Description: '.$movie['description'], | ||
metadata: new Metadata($movie), | ||
); | ||
} | ||
|
||
// initialize the table | ||
$store->initialize(['dimensions' => 768]); | ||
|
||
// create embeddings for documents | ||
$platform = PlatformFactory::create($_ENV['GOOGLE_API_KEY']); | ||
$embeddings = new Embeddings(options: ['dimensions' => 768, 'task_type' => TaskType::SemanticSimilarity]); | ||
$indexer = new Indexer($platform, $embeddings, $store); | ||
$indexer->index($documents); | ||
|
||
$model = new Gemini(Gemini::GEMINI_2_FLASH_LITE); | ||
|
||
$similaritySearch = new SimilaritySearch($platform, $embeddings, $store); | ||
$toolbox = Toolbox::create($similaritySearch); | ||
$processor = new ChainProcessor($toolbox); | ||
$chain = new Chain($platform, $model, [$processor], [$processor]); | ||
|
||
$messages = new MessageBag( | ||
Message::forSystem('Please answer all user questions only using SimilaritySearch function.'), | ||
Message::ofUser('Which movie fits the theme of the mafia?') | ||
); | ||
$response = $chain->call($messages); | ||
|
||
echo $response->getContent().\PHP_EOL; |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
<?php | ||
|
||
declare(strict_types=1); | ||
|
||
namespace PhpLlm\LlmChain\Platform\Bridge\Google; | ||
|
||
use PhpLlm\LlmChain\Platform\Bridge\Google\Embeddings\TaskType; | ||
use PhpLlm\LlmChain\Platform\Capability; | ||
use PhpLlm\LlmChain\Platform\Model; | ||
|
||
/** | ||
* @author Valtteri R <[email protected]> | ||
*/ | ||
class Embeddings extends Model | ||
{ | ||
/** Supported dimensions: 3072, 1536, or 768 */ | ||
public const GEMINI_EMBEDDING_EXP_03_07 = 'gemini-embedding-exp-03-07'; | ||
/** Fixed 768 dimensions */ | ||
public const TEXT_EMBEDDING_004 = 'text-embedding-004'; | ||
/** Fixed 768 dimensions */ | ||
public const EMBEDDING_001 = 'embedding-001'; | ||
|
||
/** | ||
* @param array{dimensions?: int, task_type?: TaskType|string} $options | ||
*/ | ||
public function __construct(string $name = self::GEMINI_EMBEDDING_EXP_03_07, array $options = []) | ||
{ | ||
parent::__construct($name, [Capability::INPUT_MULTIPLE], $options); | ||
} | ||
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
<?php | ||
|
||
namespace PhpLlm\LlmChain\Platform\Bridge\Google\Embeddings; | ||
|
||
use PhpLlm\LlmChain\Platform\Bridge\Google\Embeddings; | ||
use PhpLlm\LlmChain\Platform\Exception\RuntimeException; | ||
use PhpLlm\LlmChain\Platform\Model; | ||
use PhpLlm\LlmChain\Platform\ModelClientInterface; | ||
use PhpLlm\LlmChain\Platform\Response\VectorResponse; | ||
use PhpLlm\LlmChain\Platform\ResponseConverterInterface; | ||
use PhpLlm\LlmChain\Platform\Vector\Vector; | ||
use Symfony\Contracts\HttpClient\HttpClientInterface; | ||
use Symfony\Contracts\HttpClient\ResponseInterface; | ||
|
||
/** | ||
* @author Valtteri R <[email protected]> | ||
*/ | ||
final readonly class ModelClient implements ModelClientInterface, ResponseConverterInterface | ||
{ | ||
public function __construct( | ||
private HttpClientInterface $httpClient, | ||
#[\SensitiveParameter] | ||
private string $apiKey, | ||
) { | ||
} | ||
|
||
public function supports(Model $model): bool | ||
{ | ||
return $model instanceof Embeddings; | ||
} | ||
|
||
public function request(Model $model, array|string $payload, array $options = []): ResponseInterface | ||
{ | ||
$url = \sprintf('https://generativelanguage.googleapis.com/v1beta/models/%s:%s', $model->getName(), 'batchEmbedContents'); | ||
$modelOptions = $model->getOptions(); | ||
|
||
return $this->httpClient->request('POST', $url, [ | ||
'headers' => [ | ||
'x-goog-api-key' => $this->apiKey, | ||
], | ||
'json' => [ | ||
'requests' => array_map( | ||
static fn (string $text) => array_filter([ | ||
'model' => 'models/'.$model->getName(), | ||
'content' => ['parts' => [['text' => $text]]], | ||
'outputDimensionality' => $modelOptions['dimensions'] ?? null, | ||
'taskType' => $modelOptions['task_type'] ?? null, | ||
'title' => $options['title'] ?? null, | ||
]), | ||
\is_array($payload) ? $payload : [$payload], | ||
), | ||
], | ||
]); | ||
} | ||
|
||
public function convert(ResponseInterface $response, array $options = []): VectorResponse | ||
{ | ||
$data = $response->toArray(); | ||
|
||
if (!isset($data['embeddings'])) { | ||
throw new RuntimeException('Response does not contain data'); | ||
} | ||
|
||
return new VectorResponse( | ||
...array_map( | ||
static fn (array $item): Vector => new Vector($item['values']), | ||
$data['embeddings'], | ||
), | ||
); | ||
} | ||
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
<?php | ||
|
||
namespace PhpLlm\LlmChain\Platform\Bridge\Google\Embeddings; | ||
|
||
enum TaskType: string | ||
{ | ||
/** Unset value, which will default to one of the other enum values. */ | ||
public const TaskTypeUnspecified = 'TASK_TYPE_UNSPECIFIED'; | ||
/** Specifies the given text is a query in a search/retrieval setting. */ | ||
public const RetrievalQuery = 'RETRIEVAL_QUERY'; | ||
/** Specifies the given text is a document from the corpus being searched. */ | ||
public const RetrievalDocument = 'RETRIEVAL_DOCUMENT'; | ||
/** Specifies the given text will be used for STS. */ | ||
public const SemanticSimilarity = 'SEMANTIC_SIMILARITY'; | ||
/** Specifies that the given text will be classified. */ | ||
public const Classification = 'CLASSIFICATION'; | ||
/** Specifies that the embeddings will be used for clustering. */ | ||
public const Clustering = 'CLUSTERING'; | ||
/** Specifies that the given text will be used for question answering. */ | ||
public const QuestionAnswering = 'QUESTION_ANSWERING'; | ||
/** Specifies that the given text will be used for fact verification. */ | ||
public const FactVerification = 'FACT_VERIFICATION'; | ||
/** Specifies that the given text will be used for code retrieval. */ | ||
public const CodeRetrievalQuery = 'CODE_RETRIEVAL_QUERY'; | ||
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
102 changes: 102 additions & 0 deletions
102
tests/Platform/Bridge/Google/Embeddings/EmbeddingsModelClientTest.php
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
<?php | ||
|
||
declare(strict_types=1); | ||
|
||
namespace PhpLlm\LlmChain\Tests\Platform\Bridge\Google\Embeddings; | ||
|
||
use PhpLlm\LlmChain\Platform\Bridge\Google\Embeddings; | ||
use PhpLlm\LlmChain\Platform\Bridge\Google\Embeddings\ModelClient; | ||
use PhpLlm\LlmChain\Platform\Response\VectorResponse; | ||
use PhpLlm\LlmChain\Platform\Vector\Vector; | ||
use PHPUnit\Framework\Attributes\CoversClass; | ||
use PHPUnit\Framework\Attributes\Small; | ||
use PHPUnit\Framework\Attributes\Test; | ||
use PHPUnit\Framework\Attributes\UsesClass; | ||
use PHPUnit\Framework\TestCase; | ||
use Symfony\Contracts\HttpClient\HttpClientInterface; | ||
use Symfony\Contracts\HttpClient\ResponseInterface; | ||
|
||
#[CoversClass(ModelClient::class)] | ||
#[Small] | ||
#[UsesClass(Vector::class)] | ||
#[UsesClass(VectorResponse::class)] | ||
#[UsesClass(Embeddings::class)] | ||
final class EmbeddingsModelClientTest extends TestCase | ||
{ | ||
#[Test] | ||
public function itMakesARequestWithCorrectPayload(): void | ||
{ | ||
$response = $this->createStub(ResponseInterface::class); | ||
$response | ||
->method('toArray') | ||
->willReturn(json_decode($this->getEmbeddingStub(), true)); | ||
|
||
$httpClient = self::createMock(HttpClientInterface::class); | ||
$httpClient->expects(self::once()) | ||
->method('request') | ||
->with( | ||
'POST', | ||
'https://generativelanguage.googleapis.com/v1beta/models/gemini-embedding-exp-03-07:batchEmbedContents', | ||
[ | ||
'headers' => ['x-goog-api-key' => 'test'], | ||
'json' => [ | ||
'requests' => [ | ||
[ | ||
'model' => 'models/gemini-embedding-exp-03-07', | ||
'content' => ['parts' => [['text' => 'payload1']]], | ||
'outputDimensionality' => 1536, | ||
'taskType' => 'CLASSIFICATION', | ||
], | ||
[ | ||
'model' => 'models/gemini-embedding-exp-03-07', | ||
'content' => ['parts' => [['text' => 'payload2']]], | ||
'outputDimensionality' => 1536, | ||
'taskType' => 'CLASSIFICATION', | ||
], | ||
], | ||
], | ||
], | ||
) | ||
->willReturn($response); | ||
|
||
$model = new Embeddings(Embeddings::GEMINI_EMBEDDING_EXP_03_07, ['dimensions' => 1536, 'task_type' => 'CLASSIFICATION']); | ||
|
||
$httpResponse = (new ModelClient($httpClient, 'test'))->request($model, ['payload1', 'payload2']); | ||
valtzu marked this conversation as resolved.
Show resolved
Hide resolved
|
||
self::assertSame(json_decode($this->getEmbeddingStub(), true), $httpResponse->toArray()); | ||
} | ||
|
||
#[Test] | ||
public function itConvertsAResponseToAVectorResponse(): void | ||
{ | ||
$response = $this->createStub(ResponseInterface::class); | ||
$response | ||
->method('toArray') | ||
->willReturn(json_decode($this->getEmbeddingStub(), true)); | ||
|
||
$httpClient = self::createMock(HttpClientInterface::class); | ||
|
||
$vectorResponse = (new ModelClient($httpClient, 'test'))->convert($response); | ||
$convertedContent = $vectorResponse->getContent(); | ||
|
||
self::assertCount(2, $convertedContent); | ||
|
||
self::assertSame([0.3, 0.4, 0.4], $convertedContent[0]->getData()); | ||
self::assertSame([0.0, 0.0, 0.2], $convertedContent[1]->getData()); | ||
} | ||
|
||
private function getEmbeddingStub(): string | ||
{ | ||
return <<<'JSON' | ||
{ | ||
"embeddings": [ | ||
{ | ||
"values": [0.3, 0.4, 0.4] | ||
}, | ||
{ | ||
"values": [0.0, 0.0, 0.2] | ||
} | ||
] | ||
} | ||
JSON; | ||
} | ||
} |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.