Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions pandas/core/arrays/floating.py
Original file line number Diff line number Diff line change
Expand Up @@ -386,9 +386,9 @@ def astype(self, dtype, copy: bool = True) -> ArrayLike:
# coerce
if is_float_dtype(dtype):
# In astype, we consider dtype=float to also mean na_value=np.nan
kwargs = dict(na_value=np.nan)
kwargs = {"na_value": np.nan}
elif is_datetime64_dtype(dtype):
kwargs = dict(na_value=np.datetime64("NaT"))
kwargs = {"na_value": np.datetime64("NaT")}
else:
kwargs = {}

Expand Down
18 changes: 9 additions & 9 deletions pandas/core/arrays/numpy_.py
Original file line number Diff line number Diff line change
Expand Up @@ -273,12 +273,12 @@ def _values_for_factorize(self) -> Tuple[np.ndarray, int]:
# Reductions

def any(self, *, axis=None, out=None, keepdims=False, skipna=True):
nv.validate_any((), dict(out=out, keepdims=keepdims))
nv.validate_any((), {"out": out, "keepdims": keepdims})
result = nanops.nanany(self._ndarray, axis=axis, skipna=skipna)
return self._wrap_reduction_result(axis, result)

def all(self, *, axis=None, out=None, keepdims=False, skipna=True):
nv.validate_all((), dict(out=out, keepdims=keepdims))
nv.validate_all((), {"out": out, "keepdims": keepdims})
result = nanops.nanall(self._ndarray, axis=axis, skipna=skipna)
return self._wrap_reduction_result(axis, result)

Expand Down Expand Up @@ -311,15 +311,15 @@ def prod(self, *, axis=None, skipna=True, min_count=0, **kwargs) -> Scalar:
return self._wrap_reduction_result(axis, result)

def mean(self, *, axis=None, dtype=None, out=None, keepdims=False, skipna=True):
nv.validate_mean((), dict(dtype=dtype, out=out, keepdims=keepdims))
nv.validate_mean((), {"dtype": dtype, "out": out, "keepdims": keepdims})
result = nanops.nanmean(self._ndarray, axis=axis, skipna=skipna)
return self._wrap_reduction_result(axis, result)

def median(
self, *, axis=None, out=None, overwrite_input=False, keepdims=False, skipna=True
):
nv.validate_median(
(), dict(out=out, overwrite_input=overwrite_input, keepdims=keepdims)
(), {"out": out, "overwrite_input": overwrite_input, "keepdims": keepdims}
)
result = nanops.nanmedian(self._ndarray, axis=axis, skipna=skipna)
return self._wrap_reduction_result(axis, result)
Expand All @@ -328,7 +328,7 @@ def std(
self, *, axis=None, dtype=None, out=None, ddof=1, keepdims=False, skipna=True
):
nv.validate_stat_ddof_func(
(), dict(dtype=dtype, out=out, keepdims=keepdims), fname="std"
(), {"dtype": dtype, "out": out, "keepdims": keepdims}, fname="std"
)
result = nanops.nanstd(self._ndarray, axis=axis, skipna=skipna, ddof=ddof)
return self._wrap_reduction_result(axis, result)
Expand All @@ -337,7 +337,7 @@ def var(
self, *, axis=None, dtype=None, out=None, ddof=1, keepdims=False, skipna=True
):
nv.validate_stat_ddof_func(
(), dict(dtype=dtype, out=out, keepdims=keepdims), fname="var"
(), {"dtype": dtype, "out": out, "keepdims": keepdims}, fname="var"
)
result = nanops.nanvar(self._ndarray, axis=axis, skipna=skipna, ddof=ddof)
return self._wrap_reduction_result(axis, result)
Expand All @@ -346,21 +346,21 @@ def sem(
self, *, axis=None, dtype=None, out=None, ddof=1, keepdims=False, skipna=True
):
nv.validate_stat_ddof_func(
(), dict(dtype=dtype, out=out, keepdims=keepdims), fname="sem"
(), {"dtype": dtype, "out": out, "keepdims": keepdims}, fname="sem"
)
result = nanops.nansem(self._ndarray, axis=axis, skipna=skipna, ddof=ddof)
return self._wrap_reduction_result(axis, result)

def kurt(self, *, axis=None, dtype=None, out=None, keepdims=False, skipna=True):
nv.validate_stat_ddof_func(
(), dict(dtype=dtype, out=out, keepdims=keepdims), fname="kurt"
(), {"dtype": dtype, "out": out, "keepdims": keepdims}, fname="kurt"
)
result = nanops.nankurt(self._ndarray, axis=axis, skipna=skipna)
return self._wrap_reduction_result(axis, result)

def skew(self, *, axis=None, dtype=None, out=None, keepdims=False, skipna=True):
nv.validate_stat_ddof_func(
(), dict(dtype=dtype, out=out, keepdims=keepdims), fname="skew"
(), {"dtype": dtype, "out": out, "keepdims": keepdims}, fname="skew"
)
result = nanops.nanskew(self._ndarray, axis=axis, skipna=skipna)
return self._wrap_reduction_result(axis, result)
Expand Down