Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions pandas/core/window/rolling.py
Original file line number Diff line number Diff line change
Expand Up @@ -397,7 +397,7 @@ def _insert_on_column(self, result: "DataFrame", obj: "DataFrame"):

if self.on is not None and not self._on.equals(obj.index):
name = self._on.name
extra_col = Series(self._on, index=obj.index, name=name)
extra_col = Series(self._on, index=self.obj.index, name=name)
if name in result.columns:
# TODO: sure we want to overwrite results?
result[name] = extra_col
Expand Down Expand Up @@ -2268,7 +2268,7 @@ def _get_window_indexer(self, window: int) -> GroupbyRollingIndexer:
"""
rolling_indexer: Type[BaseIndexer]
indexer_kwargs: Optional[Dict] = None
index_array = self.obj.index.asi8
index_array = self._on.asi8
if isinstance(self.window, BaseIndexer):
rolling_indexer = type(self.window)
indexer_kwargs = self.window.__dict__
Expand Down
29 changes: 29 additions & 0 deletions pandas/tests/window/test_grouper.py
Original file line number Diff line number Diff line change
Expand Up @@ -416,3 +416,32 @@ def test_groupby_rolling_empty_frame(self):
result = expected.groupby(["s1", "s2"]).rolling(window=1).sum()
expected.index = pd.MultiIndex.from_tuples([], names=["s1", "s2", None])
tm.assert_frame_equal(result, expected)

def test_groupby_rolling_string_index(self):
# GH: 36727
df = pd.DataFrame(
[
["A", "group_1", pd.Timestamp(2019, 1, 1, 9)],
["B", "group_1", pd.Timestamp(2019, 1, 2, 9)],
["Z", "group_2", pd.Timestamp(2019, 1, 3, 9)],
["H", "group_1", pd.Timestamp(2019, 1, 6, 9)],
["E", "group_2", pd.Timestamp(2019, 1, 20, 9)],
],
columns=["index", "group", "eventTime"],
).set_index("index")

groups = df.groupby("group")
df["count_to_date"] = groups.cumcount()
rolling_groups = groups.rolling("10d", on="eventTime")
result = rolling_groups.apply(lambda df: df.shape[0])
expected = pd.DataFrame(
[
["A", "group_1", pd.Timestamp(2019, 1, 1, 9), 1.0],
["B", "group_1", pd.Timestamp(2019, 1, 2, 9), 2.0],
["H", "group_1", pd.Timestamp(2019, 1, 6, 9), 3.0],
["Z", "group_2", pd.Timestamp(2019, 1, 3, 9), 1.0],
["E", "group_2", pd.Timestamp(2019, 1, 20, 9), 1.0],
],
columns=["index", "group", "eventTime", "count_to_date"],
).set_index(["group", "index"])
tm.assert_frame_equal(result, expected)