-
-
Notifications
You must be signed in to change notification settings - Fork 19k
DOC: update the pandas.Series/DataFrame.interpolate docstring #20270
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 6 commits
b39289f
0f5f666
5358af9
6cee318
ba8cfd2
272d5e2
d64f5f3
0734c3b
1eab0a8
3ca95ec
b123846
3af4306
3f00e93
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -5257,32 +5257,29 @@ def replace(self, to_replace=None, value=None, inplace=False, limit=None, | |
---------- | ||
method : {'linear', 'time', 'index', 'values', 'nearest', 'zero', | ||
'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh', | ||
'polynomial', 'spline', 'piecewise_polynomial', | ||
'polynomial', 'spline', 'piecewise_polynomial', 'pad', | ||
'from_derivatives', 'pchip', 'akima'} | ||
Interpolation technique to use. | ||
|
||
* 'linear': ignore the index and treat the values as equally | ||
* 'linear': Ignore the index and treat the values as equally | ||
spaced. This is the only method supported on MultiIndexes. | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I understand why you added these, but generally do not put punctuation at the end of bullet points. If you get an error as a result OK to ignore |
||
default | ||
* 'time': interpolation works on daily and higher resolution | ||
data to interpolate given length of interval | ||
* 'index', 'values': use the actual numerical values of the index | ||
* 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', | ||
'barycentric', 'polynomial' is passed to | ||
* 'time': Works on daily and higher resolution | ||
data to interpolate given length of interval. | ||
* 'index', 'values': use the actual numerical values of the index. | ||
* 'pad': Fill in NaNs using existing values. | ||
* 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'spline', | ||
'barycentric', 'polynomial': Passed to | ||
``scipy.interpolate.interp1d``. Both 'polynomial' and 'spline' | ||
|
||
require that you also specify an `order` (int), | ||
e.g. df.interpolate(method='polynomial', order=4). | ||
|
||
These use the actual numerical values of the index. | ||
* 'krogh', 'piecewise_polynomial', 'spline', 'pchip' and 'akima' | ||
are all wrappers around the scipy interpolation methods of | ||
similar names. These use the actual numerical values of the | ||
index. For more information on their behavior, see the | ||
`scipy documentation | ||
<http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation>`__ | ||
and `tutorial documentation | ||
<http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html>`__ | ||
* 'from_derivatives' refers to BPoly.from_derivatives which | ||
* 'krogh', 'piecewise_polynomial', 'spline', 'pchip', 'akima': | ||
Wrappers around the scipy interpolation methods of similar | ||
|
||
names. See `Notes`. | ||
* 'from_derivatives': Refers to | ||
``scipy.interpolate.BPoly.from_derivatives`` which | ||
|
||
replaces 'piecewise_polynomial' interpolation method in | ||
scipy 0.18 | ||
scipy 0.18. | ||
|
||
.. versionadded:: 0.18.1 | ||
|
||
|
@@ -5291,47 +5288,162 @@ def replace(self, to_replace=None, value=None, inplace=False, limit=None, | |
'piecewise_polynomial' in scipy 0.18; backwards-compatible with | ||
scipy < 0.18 | ||
|
||
axis : {0, 1}, default 0 | ||
* 0: fill column-by-column | ||
* 1: fill row-by-row | ||
limit : int, default None. | ||
Maximum number of consecutive NaNs to fill. Must be greater than 0. | ||
axis : {0 or 'index', 1 or 'columns', None}, default None | ||
Axis to interpolate along. | ||
limit : int, optional | ||
Maximum number of consecutive NaNs to fill. Must be greater than | ||
0. | ||
inplace : bool, default False | ||
Update the data in place if possible. | ||
limit_direction : {'forward', 'backward', 'both'}, default 'forward' | ||
limit_area : {'inside', 'outside'}, default None | ||
* None: (default) no fill restriction | ||
* 'inside' Only fill NaNs surrounded by valid values (interpolate). | ||
* 'outside' Only fill NaNs outside valid values (extrapolate). | ||
.. versionadded:: 0.21.0 | ||
|
||
If limit is specified, consecutive NaNs will be filled in this | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Put back ticks around `NaN` |
||
direction. | ||
inplace : bool, default False | ||
Update the NDFrame in place if possible. | ||
limit_area : {`None`, 'inside', 'outside'} | ||
|
||
If limit is specified, consecutive NaNs will be filled with this | ||
restriction. | ||
|
||
* None: No fill restriction (default). | ||
* 'inside': Only fill NaNs surrounded by valid values | ||
(interpolate). | ||
* 'outside': Only fill NaNs outside valid values (extrapolate). | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Would be good to add an example for 'outside' |
||
|
||
.. versionadded:: 0.21.0 | ||
|
||
downcast : optional, 'infer' or None, defaults to None | ||
Downcast dtypes if possible. | ||
kwargs : keyword arguments to pass on to the interpolating function. | ||
**kwargs | ||
Keyword arguments to pass on to the interpolating function. | ||
|
||
Returns | ||
------- | ||
Series or DataFrame of same shape interpolated at the NaNs | ||
Series or DataFrame | ||
Same-shape object interpolated at the NaN values | ||
|
||
|
||
See Also | ||
-------- | ||
reindex, replace, fillna | ||
replace : replace a value | ||
|
||
fillna : fill missing values | ||
scipy.interpolate.Akima1DInterpolator : piecewise cubic polynomials | ||
(Akima interpolator) | ||
scipy.interpolate.BPoly.from_derivatives : piecewise polynomial in the | ||
Bernstein basis | ||
scipy.interpolate.interp1d : interpolate a 1-D function | ||
scipy.interpolate.KroghInterpolator : interpolate polynomial (Krogh | ||
interpolator) | ||
scipy.interpolate.PchipInterpolator : PCHIP 1-d monotonic cubic | ||
interpolation | ||
scipy.interpolate.CubicSpline : cubic spline data interpolator | ||
|
||
Notes | ||
----- | ||
If the selected `method` is one of 'krogh', 'piecewise_polynomial', | ||
|
||
'spline', 'pchip', 'akima': | ||
They are wrappers around the scipy interpolation methods of similar | ||
names. These use the actual numerical values of the index. | ||
|
||
For more information on their behavior, see the | ||
`scipy documentation | ||
<http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation>`__ | ||
and `tutorial documentation | ||
<http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html>`__. | ||
|
||
Examples | ||
-------- | ||
|
||
Filling in NaNs | ||
Filling in `NaN` in a :class:`~pandas.Series` via linear | ||
|
||
interpolation. | ||
|
||
>>> s = pd.Series([0, 1, np.nan, 3]) | ||
>>> s.interpolate() | ||
0 0 | ||
1 1 | ||
2 2 | ||
3 3 | ||
0 0.0 | ||
1 1.0 | ||
2 2.0 | ||
3 3.0 | ||
dtype: float64 | ||
|
||
Filling in `NaN` in a Series by padding, but filling at most two | ||
|
||
consecutive `NaN` at a time. | ||
|
||
>>> s = pd.Series([np.nan, "single_one", np.nan, | ||
... "fill_two_more", np.nan, np.nan, np.nan, | ||
... 4.71, np.nan]) | ||
>>> s | ||
0 NaN | ||
1 single_one | ||
2 NaN | ||
3 fill_two_more | ||
4 NaN | ||
5 NaN | ||
6 NaN | ||
7 4.71 | ||
8 NaN | ||
dtype: object | ||
>>> s.interpolate(method='pad', limit=2) | ||
0 NaN | ||
1 single_one | ||
2 single_one | ||
3 fill_two_more | ||
4 fill_two_more | ||
5 fill_two_more | ||
6 NaN | ||
7 4.71 | ||
8 4.71 | ||
dtype: object | ||
|
||
Filling in `NaN` in a Series via polynomial interpolation or splines: | ||
|
||
Both `polynomial` and `spline` methods require that you also specify | ||
an `order` (int). | ||
|
||
>>> s = pd.Series([0, 2, np.nan, 8]) | ||
>>> s.interpolate(method='polynomial', order=1) | ||
0 0.0 | ||
1 2.0 | ||
2 5.0 | ||
3 8.0 | ||
dtype: float64 | ||
>>> s.interpolate(method='polynomial', order=2) | ||
0 0.000000 | ||
1 2.000000 | ||
2 4.666667 | ||
3 8.000000 | ||
dtype: float64 | ||
|
||
Create a :class:`~pandas.DataFrame` with missing values to fill it | ||
|
||
with diffferent methods. | ||
|
||
>>> df = pd.DataFrame([[0,1,2,0,4],[1,2,3,-1,8], | ||
|
||
... [2,3,4,-2,12],[3,4,5,-3,16]], | ||
... columns=['a', 'b', 'c', 'd', 'e']) | ||
>>> df | ||
a b c d e | ||
0 0 1 2 0 4 | ||
1 1 2 3 -1 8 | ||
2 2 3 4 -2 12 | ||
3 3 4 5 -3 16 | ||
>>> df.loc[1,'a'] = np.nan | ||
>>> df.loc[3,'a'] = np.nan | ||
>>> df.loc[0,'b'] = np.nan | ||
>>> df.loc[1,'d'] = np.nan | ||
>>> df.loc[2,'d'] = np.nan | ||
>>> df.loc[1,'e'] = np.nan | ||
>>> df | ||
a b c d e | ||
0 0.0 NaN 2 0.0 4.0 | ||
1 NaN 2.0 3 NaN NaN | ||
2 2.0 3.0 4 NaN 12.0 | ||
3 NaN 4.0 5 -3.0 16.0 | ||
|
||
Fill the DataFrame forward (that is, going down) along each column. | ||
Note how the last entry in column `a` is interpolated differently | ||
(because there is no entry after it to use for interpolation). | ||
|
||
Note how the first entry in column `b` remains `NaN` (because there | ||
is no entry befofe it to use for interpolation). | ||
|
||
>>> df.interpolate(method='linear', limit_direction='forward', axis=0) | ||
a b c d e | ||
0 0.0 NaN 2 0.0 4.0 | ||
1 1.0 2.0 3 -1.0 8.0 | ||
2 2.0 3.0 4 -2.0 12.0 | ||
3 2.0 4.0 5 -3.0 16.0 | ||
""" | ||
|
||
@Appender(_shared_docs['interpolate'] % _shared_doc_kwargs) | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Generally shouldn't need periods at the end of bullet points