Skip to content

added pd as namespace #12608

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
91 changes: 45 additions & 46 deletions doc/source/io.rst
Original file line number Diff line number Diff line change
Expand Up @@ -19,10 +19,9 @@
import matplotlib.pyplot as plt
plt.close('all')

from pandas import *
options.display.max_rows=15
import pandas.util.testing as tm
clipdf = DataFrame({'A':[1,2,3],'B':[4,5,6],'C':['p','q','r']},
clipdf = pd.DataFrame({'A':[1,2,3],'B':[4,5,6],'C':['p','q','r']},
index=['x','y','z'])

===============================
Expand Down Expand Up @@ -1195,7 +1194,7 @@ class of the csv module. For this, you have to specify ``sep=None``.
.. ipython:: python
:suppress:

df = DataFrame(np.random.randn(10, 4))
df = pd.DataFrame(np.random.randn(10, 4))
df.to_csv('tmp.sv', sep='|')
df.to_csv('tmp2.sv', sep=':')

Expand Down Expand Up @@ -1375,7 +1374,7 @@ Note ``NaN``'s, ``NaT``'s and ``None`` will be converted to ``null`` and ``datet

.. ipython:: python

dfj = DataFrame(randn(5, 2), columns=list('AB'))
dfj = pd.DataFrame(randn(5, 2), columns=list('AB'))
json = dfj.to_json()
json

Expand All @@ -1387,10 +1386,10 @@ file / string. Consider the following DataFrame and Series:

.. ipython:: python

dfjo = DataFrame(dict(A=range(1, 4), B=range(4, 7), C=range(7, 10)),
dfjo = pd.DataFrame(dict(A=range(1, 4), B=range(4, 7), C=range(7, 10)),
columns=list('ABC'), index=list('xyz'))
dfjo
sjo = Series(dict(x=15, y=16, z=17), name='D')
sjo = pd.Series(dict(x=15, y=16, z=17), name='D')
sjo

**Column oriented** (the default for ``DataFrame``) serializes the data as
Expand Down Expand Up @@ -1472,10 +1471,10 @@ Writing to a file, with a date index and a date column
.. ipython:: python

dfj2 = dfj.copy()
dfj2['date'] = Timestamp('20130101')
dfj2['date'] = pd.Timestamp('20130101')
dfj2['ints'] = list(range(5))
dfj2['bools'] = True
dfj2.index = date_range('20130101', periods=5)
dfj2.index = pd.date_range('20130101', periods=5)
dfj2.to_json('test.json')
open('test.json').read()

Expand Down Expand Up @@ -1506,7 +1505,7 @@ problems:

In [141]: from datetime import timedelta

In [142]: dftd = DataFrame([timedelta(23), timedelta(seconds=5), 42])
In [142]: dftd = pd.DataFrame([timedelta(23), timedelta(seconds=5), 42])

In [143]: dftd.to_json()

Expand Down Expand Up @@ -1633,7 +1632,7 @@ Preserve string indices:

.. ipython:: python

si = DataFrame(np.zeros((4, 4)),
si = pd.DataFrame(np.zeros((4, 4)),
columns=list(range(4)),
index=[str(i) for i in range(4)])
si
Expand Down Expand Up @@ -1681,7 +1680,7 @@ data:

randfloats = np.random.uniform(-100, 1000, 10000)
randfloats.shape = (1000, 10)
dffloats = DataFrame(randfloats, columns=list('ABCDEFGHIJ'))
dffloats = pd.DataFrame(randfloats, columns=list('ABCDEFGHIJ'))

jsonfloats = dffloats.to_json()

Expand Down Expand Up @@ -1884,7 +1883,7 @@ Read in pandas ``to_html`` output (with some loss of floating point precision)

.. code-block:: python

df = DataFrame(randn(2, 2))
df = pd.DataFrame(randn(2, 2))
s = df.to_html(float_format='{0:.40g}'.format)
dfin = read_html(s, index_col=0)

Expand Down Expand Up @@ -1937,7 +1936,7 @@ in the method ``to_string`` described above.

.. ipython:: python

df = DataFrame(randn(2, 2))
df = pd.DataFrame(randn(2, 2))
df
print(df.to_html()) # raw html

Expand Down Expand Up @@ -2013,7 +2012,7 @@ Finally, the ``escape`` argument allows you to control whether the

.. ipython:: python

df = DataFrame({'a': list('&<>'), 'b': randn(3)})
df = pd.DataFrame({'a': list('&<>'), 'b': randn(3)})


.. ipython:: python
Expand Down Expand Up @@ -2367,7 +2366,7 @@ Added support for Openpyxl >= 2.2
bio = BytesIO()

# By setting the 'engine' in the ExcelWriter constructor.
writer = ExcelWriter(bio, engine='xlsxwriter')
writer = pd.ExcelWriter(bio, engine='xlsxwriter')
df.to_excel(writer, sheet_name='Sheet1')

# Save the workbook
Expand Down Expand Up @@ -2423,7 +2422,7 @@ argument to ``to_excel`` and to ``ExcelWriter``. The built-in engines are:
df.to_excel('path_to_file.xlsx', sheet_name='Sheet1', engine='xlsxwriter')

# By setting the 'engine' in the ExcelWriter constructor.
writer = ExcelWriter('path_to_file.xlsx', engine='xlsxwriter')
writer = pd.ExcelWriter('path_to_file.xlsx', engine='xlsxwriter')

# Or via pandas configuration.
from pandas import options
Expand Down Expand Up @@ -2559,7 +2558,7 @@ both on the writing (serialization), and reading (deserialization).

.. ipython:: python

df = DataFrame(np.random.rand(5,2),columns=list('AB'))
df = pd.DataFrame(np.random.rand(5,2),columns=list('AB'))
df.to_msgpack('foo.msg')
pd.read_msgpack('foo.msg')
s = Series(np.random.rand(5),index=date_range('20130101',periods=5))
Expand Down Expand Up @@ -2647,7 +2646,7 @@ for some advanced strategies

.. ipython:: python

store = HDFStore('store.h5')
store = pd.HDFStore('store.h5')
print(store)

Objects can be written to the file just like adding key-value pairs to a
Expand All @@ -2656,11 +2655,11 @@ dict:
.. ipython:: python

np.random.seed(1234)
index = date_range('1/1/2000', periods=8)
s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])
df = DataFrame(randn(8, 3), index=index,
index = pd.date_range('1/1/2000', periods=8)
s = pd.Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])
df = pd.DataFrame(randn(8, 3), index=index,
columns=['A', 'B', 'C'])
wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
wp = pd.Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
major_axis=date_range('1/1/2000', periods=5),
minor_axis=['A', 'B', 'C', 'D'])

Expand Down Expand Up @@ -2705,7 +2704,7 @@ Closing a Store, Context Manager

# Working with, and automatically closing the store with the context
# manager
with HDFStore('store.h5') as store:
with pd.HDFStore('store.h5') as store:
store.keys()

.. ipython:: python
Expand Down Expand Up @@ -2772,7 +2771,7 @@ This is also true for the major axis of a ``Panel``:
[[np.nan, np.nan, np.nan], [np.nan,5,6]],
[[np.nan, np.nan, np.nan],[np.nan,3,np.nan]]]

panel_with_major_axis_all_missing = Panel(matrix,
panel_with_major_axis_all_missing = pd.Panel(matrix,
items=['Item1', 'Item2','Item3'],
major_axis=[1,2],
minor_axis=['A', 'B', 'C'])
Expand Down Expand Up @@ -2816,7 +2815,7 @@ This format is specified by default when using ``put`` or ``to_hdf`` or by ``for

.. code-block:: python

DataFrame(randn(10,2)).to_hdf('test_fixed.h5','df')
pd.DataFrame(randn(10,2)).to_hdf('test_fixed.h5','df')

pd.read_hdf('test_fixed.h5','df',where='index>5')
TypeError: cannot pass a where specification when reading a fixed format.
Expand Down Expand Up @@ -2848,7 +2847,7 @@ enable ``put/append/to_hdf`` to by default store in the ``table`` format.

.. ipython:: python

store = HDFStore('store.h5')
store = pd.HDFStore('store.h5')
df1 = df[0:4]
df2 = df[4:]

Expand Down Expand Up @@ -2914,7 +2913,7 @@ defaults to `nan`.

.. ipython:: python

df_mixed = DataFrame({ 'A' : randn(8),
df_mixed = pd.DataFrame({ 'A' : randn(8),
'B' : randn(8),
'C' : np.array(randn(8),dtype='float32'),
'string' :'string',
Expand All @@ -2940,12 +2939,12 @@ storing/selecting from homogeneous index DataFrames.

.. ipython:: python

index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
index = pd.MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
['one', 'two', 'three']],
labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
[0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
names=['foo', 'bar'])
df_mi = DataFrame(np.random.randn(10, 3), index=index,
df_mi = pd.DataFrame(np.random.randn(10, 3), index=index,
columns=['A', 'B', 'C'])
df_mi

Expand Down Expand Up @@ -3127,7 +3126,7 @@ specified in the format: ``<float>(<unit>)``, where float may be signed (and fra
.. ipython:: python

from datetime import timedelta
dftd = DataFrame(dict(A = Timestamp('20130101'), B = [ Timestamp('20130101') + timedelta(days=i,seconds=10) for i in range(10) ]))
dftd = pd.DataFrame(dict(A = Timestamp('20130101'), B = [ Timestamp('20130101') + timedelta(days=i,seconds=10) for i in range(10) ]))
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

so since you eliminated the from pandas import * you need to build the docs and you will see failures, eg. pd.Timestamp

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ah. OK, thanks for the hint.

dftd['C'] = dftd['A']-dftd['B']
dftd
store.append('dftd',dftd,data_columns=True)
Expand Down Expand Up @@ -3163,8 +3162,8 @@ Oftentimes when appending large amounts of data to a store, it is useful to turn

.. ipython:: python

df_1 = DataFrame(randn(10,2),columns=list('AB'))
df_2 = DataFrame(randn(10,2),columns=list('AB'))
df_1 = pd.DataFrame(randn(10,2),columns=list('AB'))
df_2 = pd.DataFrame(randn(10,2),columns=list('AB'))

st = pd.HDFStore('appends.h5',mode='w')
st.append('df', df_1, data_columns=['B'], index=False)
Expand Down Expand Up @@ -3261,7 +3260,7 @@ chunks.

.. ipython:: python

dfeq = DataFrame({'number': np.arange(1,11)})
dfeq = pd.DataFrame({'number': np.arange(1,11)})
dfeq

store.append('dfeq', dfeq, data_columns=['number'])
Expand Down Expand Up @@ -3301,7 +3300,7 @@ Sometimes you want to get the coordinates (a.k.a the index locations) of your qu

.. ipython:: python

df_coord = DataFrame(np.random.randn(1000,2),index=date_range('20000101',periods=1000))
df_coord = pd.DataFrame(np.random.randn(1000,2),index=date_range('20000101',periods=1000))
store.append('df_coord',df_coord)
c = store.select_as_coordinates('df_coord','index>20020101')
c.summary()
Expand All @@ -3318,7 +3317,7 @@ a datetimeindex which are 5.

.. ipython:: python

df_mask = DataFrame(np.random.randn(1000,2),index=date_range('20000101',periods=1000))
df_mask = pd.DataFrame(np.random.randn(1000,2),index=date_range('20000101',periods=1000))
store.append('df_mask',df_mask)
c = store.select_column('df_mask','index')
where = c[DatetimeIndex(c).month==5].index
Expand Down Expand Up @@ -3366,7 +3365,7 @@ results.

.. ipython:: python

df_mt = DataFrame(randn(8, 6), index=date_range('1/1/2000', periods=8),
df_mt = pd.DataFrame(randn(8, 6), index=date_range('1/1/2000', periods=8),
columns=['A', 'B', 'C', 'D', 'E', 'F'])
df_mt['foo'] = 'bar'
df_mt.ix[1, ('A', 'B')] = np.nan
Expand Down Expand Up @@ -3458,7 +3457,7 @@ Compression for all objects within the file

.. code-block:: python

store_compressed = HDFStore('store_compressed.h5', complevel=9, complib='blosc')
store_compressed = pd.HDFStore('store_compressed.h5', complevel=9, complib='blosc')

Or on-the-fly compression (this only applies to tables). You can turn
off file compression for a specific table by passing ``complevel=0``
Expand Down Expand Up @@ -3556,7 +3555,7 @@ stored in a more efficient manner.

.. ipython:: python

dfcat = DataFrame({ 'A' : Series(list('aabbcdba')).astype('category'),
dfcat = pd.DataFrame({ 'A' : Series(list('aabbcdba')).astype('category'),
'B' : np.random.randn(8) })
dfcat
dfcat.dtypes
Expand Down Expand Up @@ -3614,7 +3613,7 @@ Starting in 0.11.0, passing a ``min_itemsize`` dict will cause all passed column

.. ipython:: python

dfs = DataFrame(dict(A = 'foo', B = 'bar'),index=list(range(5)))
dfs = pd.DataFrame(dict(A = 'foo', B = 'bar'),index=list(range(5)))
dfs

# A and B have a size of 30
Expand All @@ -3633,7 +3632,7 @@ You could inadvertently turn an actual ``nan`` value into a missing value.

.. ipython:: python

dfss = DataFrame(dict(A = ['foo','bar','nan']))
dfss = pd.DataFrame(dict(A = ['foo','bar','nan']))
dfss

store.append('dfss', dfss)
Expand Down Expand Up @@ -3667,7 +3666,7 @@ It is possible to write an ``HDFStore`` object that can easily be imported into
index=range(100))
df_for_r.head()

store_export = HDFStore('export.h5')
store_export = pd.HDFStore('export.h5')
store_export.append('df_for_r', df_for_r, data_columns=df_dc.columns)
store_export

Expand Down Expand Up @@ -3756,7 +3755,7 @@ number of options, please see the docstring.
.. ipython:: python

# a legacy store
legacy_store = HDFStore(legacy_file_path,'r')
legacy_store = pd.HDFStore(legacy_file_path,'r')
legacy_store

# copy (and return the new handle)
Expand Down Expand Up @@ -3920,7 +3919,7 @@ the database using :func:`~pandas.DataFrame.to_sql`.
(42, datetime.datetime(2010,10,19), 'Y', -12.5, False),
(63, datetime.datetime(2010,10,20), 'Z', 5.73, True)]

data = DataFrame(d, columns=c)
data = pd.DataFrame(d, columns=c)

.. ipython:: python

Expand Down Expand Up @@ -4400,7 +4399,7 @@ into a .dta file. The format version of this file is always 115 (Stata 12).

.. ipython:: python

df = DataFrame(randn(10, 2), columns=list('AB'))
df = pd.DataFrame(randn(10, 2), columns=list('AB'))
df.to_stata('stata.dta')

*Stata* data files have limited data type support; only strings with
Expand Down Expand Up @@ -4625,7 +4624,7 @@ This is an informal comparison of various IO methods, using pandas 0.13.1.

.. code-block:: python

In [1]: df = DataFrame(randn(1000000,2),columns=list('AB'))
In [1]: df = pd.DataFrame(randn(1000000,2),columns=list('AB'))

In [2]: df.info()
<class 'pandas.core.frame.DataFrame'>
Expand Down Expand Up @@ -4699,7 +4698,7 @@ And here's the code
import os
from pandas.io import sql

df = DataFrame(randn(1000000,2),columns=list('AB'))
df = pd.DataFrame(randn(1000000,2),columns=list('AB'))

def test_sql_write(df):
if os.path.exists('test.sql'):
Expand Down