-
-
Notifications
You must be signed in to change notification settings - Fork 18.7k
Open
Labels
Arrowpyarrow functionalitypyarrow functionalityPerformanceMemory or execution speed performanceMemory or execution speed performanceStringsString extension data type and string dataString extension data type and string datahashinghash_pandas_objecthash_pandas_object
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this issue exists on the latest version of pandas.
-
I have confirmed this issue exists on the main branch of pandas.
Reproducible Example
When investigating Dask's shuffle performance on string[pyarrow]
data, I observed pd.util.hash_pandas_object
was slightly less performant on string[pyarrow]
data than on regular object
Python objects. This surprised me as I would have expected hashing pyarrow
-backed data to be faster than Python objects
In [1]: import pandas as pd
In [2]: s = pd.Series(range(2_000))
In [3]: s_object = s.astype(object)
In [4]: s_pyarrow = s.astype("string[pyarrow]")
In [5]: %timeit pd.util.hash_pandas_object(s_object)
859 µs ± 11.5 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
In [6]: %timeit pd.util.hash_pandas_object(s_pyarrow)
1.01 ms ± 29.1 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
Installed Versions
INSTALLED VERSIONS
------------------
commit : 87cfe4e38bafe7300a6003a1d18bd80f3f77c763
python : 3.10.6.final.0
python-bits : 64
OS : Darwin
OS-release : 21.6.0
Version : Darwin Kernel Version 21.6.0: Wed Aug 10 14:25:27 PDT 2022; root:xnu-8020.141.5~2/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.5.0
numpy : 1.23.3
pytz : 2022.4
dateutil : 2.8.2
setuptools : 65.4.1
pip : 22.2.2
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 8.5.0
pandas_datareader: None
bs4 : None
bottleneck : None
brotli : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 9.0.0
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
zstandard : None
tzdata : None
Prior Performance
No response
Metadata
Metadata
Assignees
Labels
Arrowpyarrow functionalitypyarrow functionalityPerformanceMemory or execution speed performanceMemory or execution speed performanceStringsString extension data type and string dataString extension data type and string datahashinghash_pandas_objecthash_pandas_object