You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When running df.groupby(field_to_group_on).any(skipna=True) it should be expected that pd.NA values are neglected for the .any() method. However the output is this:
def astype(self, dtype, copy: bool = True) -> ArrayLike:
"""
Cast to a NumPy array or ExtensionArray with 'dtype'.
Parameters
----------
dtype : str or dtype
Typecode or data-type to which the array is cast.
copy : bool, default True
Whether to copy the data, even if not necessary. If False,
a copy is made only if the old dtype does not match the
new dtype.
Returns
-------
ndarray or ExtensionArray
NumPy ndarray, BooleanArray or IntegerArray with 'dtype' for its dtype.
Raises
------
TypeError
if incompatible type with an BooleanDtype, equivalent of same_kind
casting
"""
from pandas.core.arrays.string_ import StringDtype
dtype = pandas_dtype(dtype)
if isinstance(dtype, BooleanDtype):
values, mask = coerce_to_array(self, copy=copy)
if not copy:
return self
else:
return BooleanArray(values, mask, copy=False)
elif isinstance(dtype, StringDtype):
return dtype.construct_array_type()._from_sequence(self, copy=False)
if is_bool_dtype(dtype):
# astype_nansafe converts np.nan to True
if self._hasna:
raise ValueError("cannot convert float NaN to bool")
Uh oh!
There was an error while loading. Please reload this page.
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
(optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
Problem description
When running df.groupby(field_to_group_on).any(skipna=True) it should be expected that pd.NA values are neglected for the .any() method. However the output is this:
self =
[True, False, , True]
Length: 4, dtype: boolean
dtype = dtype('bool'), copy = True
E ValueError: cannot convert float NaN to bool
Expected Output
Output of
pd.show_versions()
INSTALLED VERSIONS
commit : f2c8480
python : 3.9.1.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19041
machine : AMD64
processor : Intel64 Family 6 Model 85 Stepping 4, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_United States.1252
pandas : 1.2.3
numpy : 1.20.1
pytz : 2021.1
dateutil : 2.8.1
pip : 21.0.1
setuptools : 52.0.0
Cython : None
pytest : 6.2.2
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.3
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : 3.0.7
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : 1.6.1
sqlalchemy : 1.4.2
tables : None
tabulate : None
xarray : None
xlrd : 1.2.0
xlwt : None
numba : None
The text was updated successfully, but these errors were encountered: