Skip to content

BUG: int64 and uint64 values converted to float64 when concatenated #34356

@bergkvist

Description

@bergkvist
  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • (optional) I have confirmed this bug exists on the master branch of pandas.


Code Sample

import pandas as pd

pd.concat([
    pd.Series([1,2], dtype='uint64'),
    pd.Series([3,4], dtype='int64')
])

# Output:
0    1.0
1    2.0
0    3.0
1    4.0
dtype: float64

Problem description

The output datatype becomes float when the input datatypes are different integer types.

Since there are no NaN-values or decimals involved, it can be confusing that you suddenly get float output.

Expected Output

0    1
1    2
0    3
1    4
dtype: int64

union(int64, uint64) ⊆ int65, which is the same as int64 unless you have numbers close to "the edge".

Output of pd.show_versions()

INSTALLED VERSIONS

commit : None
python : 3.7.3.final.0
python-bits : 64
OS : Linux
OS-release : 4.9.125-linuxkit
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : en_US.UTF-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 0.25.0
numpy : 1.17.0
pytz : 2019.2
dateutil : 2.8.0
pip : 19.2.1
setuptools : 41.0.1
Cython : 0.29.13
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.5.0
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.10.1
IPython : 7.7.0
pandas_datareader: None
bs4 : 4.8.0
bottleneck : None
fastparquet : 0.3.2
gcsfs : None
lxml.etree : 4.5.0
matplotlib : 3.1.1
numexpr : 2.6.9
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : 1.3.0
sqlalchemy : 1.3.6
tables : None
xarray : None
xlrd : 1.2.0
xlwt : None
xlsxwriter : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions