-
-
Notifications
You must be signed in to change notification settings - Fork 18.7k
Closed
Labels
CIContinuous IntegrationContinuous IntegrationCompatpandas objects compatability with Numpy or Python functionspandas objects compatability with Numpy or Python functions
Description
Problem description
Looks like something has been changed in numpy, and we now get new errors when running that Numpy dev pipeline during CI. This happens regardless of PR (saw it in #31563 and #31991). Seems to be centered around cumsum and division by nan, but I don't have the time to delve deeper atm.
One of the errors below:
# axis = 0
cummin = datetime_frame.cummin()
expected = datetime_frame.apply(Series.cummin)
> tm.assert_frame_equal(cummin, expected)
pandas/tests/frame/test_cumulative.py:84:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
pandas/_libs/testing.pyx:65: in pandas._libs.testing.assert_almost_equal
cpdef assert_almost_equal(a, b,
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
> raise_assert_detail(obj, msg, lobj, robj)
E AssertionError: DataFrame.iloc[:, 0] (column name="A") are different
E
E DataFrame.iloc[:, 0] (column name="A") values are different (46.66667 %)
E [left]: [0.652282807224414, -0.06609607048075124, 6.9221550547283e-310, 4.6661712289503e-310, 4.6661712289503e-310, 0.22575641583650302, 1.5013182000449852, -0.035445399728511705, -0.4007619715825971, -0.4007619715825971, -1.4917178151508124, -0.14834313680366412, 0.545948106375247, 1.495247786960942, 0.2128973463640255, 0.794985190506577, -1.4214210868734076, -1.4214210868734076, -1.019792839223919, -0.28828070056157995, -0.47176522372684804, -0.4267351486193231, -2.816743984494702, 0.4308015055934936, -0.007381576327430263, -0.007381576327430263, -1.121456436411571, -0.25765070817685554, -0.7686775772512485, 1.0963456159671487]
E [right]: [0.652282807224414, -0.06609607048075124, -0.06609607048075124, 0.48729707348930335, 0.48729707348930335, 0.22575641583650302, 0.22575641583650302, -0.035445399728511705, -0.4007619715825971, -0.4007619715825971, 0.3249965661970306, -0.14834313680366412, -0.14834313680366412, 0.545948106375247, 0.2128973463640255, 0.2128973463640255, -1.4214210868734076, -1.4214210868734076, -0.9987072139900786, -0.9987072139900786, -0.47176522372684804, -0.47176522372684804, -2.816743984494702, -2.816743984494702, -0.007381576327430263, -0.007381576327430263, -1.121456436411571, -1.121456436411571, -0.7686775772512485, -0.7686775772512485]
Link to one of the failed pipelines. You can also just take a look at any recent PR.
Metadata
Metadata
Assignees
Labels
CIContinuous IntegrationContinuous IntegrationCompatpandas objects compatability with Numpy or Python functionspandas objects compatability with Numpy or Python functions