-
-
Notifications
You must be signed in to change notification settings - Fork 18.8k
Description
Code Sample, a copy-pastable example if possible
import pandas as pd
import datetime
date_example_string = "1911180945"
ts = datetime.datetime.strptime(
date_example_string, "%y%m%d%H%M%S"
)
test_json = [
{
"created_at": "2019-11-18 16:28:42.932887",
"foo": "bar",
}
]
df = pd.DataFrame(test_json)
df["baz"] = ts
print ("=== before ===")
print (df.to_csv())
df["created_at"] = pd.to_datetime(
df["created_at"], infer_datetime_format=True, errors="coerce"
)
print("=== after ===")
print (df.to_csv())
print("=== dropna ===")
df = df.dropna(subset=["created_at"])
print(df.to_csv())
Problem description
When using pd.dropna, it changes the format of a datetime column to a different format when calling to_csv()
=== before ===
,created_at,foo,baz
0,2019-11-18 16:28:42.932887,bar,2019-11-18 09:04:05
=== after ===
,created_at,foo,baz
0,2019-11-18 16:28:42.932887,bar,2019-11-18 09:04:05
=== dropna ===
,created_at,foo,baz
0,2019-11-18 16:28:42.932887,bar,2019-11-18 09:04:05.000000
As you can see after calling dropna the format of the baz column is now 2019-11-18 09:04:05.000000
Expected Output
=== before ===
,created_at,foo,baz
0,2019-11-18 16:28:42.932887,bar,2019-11-18 09:04:05
=== after ===
,created_at,foo,baz
0,2019-11-18 16:28:42.932887,bar,2019-11-18 09:04:05
=== dropna ===
,created_at,foo,baz
0,2019-11-18 16:28:42.932887,bar,2019-11-18 09:04:05
Output of pd.show_versions()
pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.7.4.final.0
python-bits : 64
OS : Darwin
OS-release : 18.6.0
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : None
LOCALE : en_US.UTF-8
pandas : 0.25.3
numpy : 1.16.2
pytz : 2018.9
dateutil : 2.8.0
pip : 19.0.3
setuptools : 40.8.0
Cython : 0.29.13
pytest : 5.2.1
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : 2.8 (dt dec pq3 ext lo64)
jinja2 : 2.10.3
IPython : 7.8.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None