-
-
Notifications
You must be signed in to change notification settings - Fork 19.4k
Description
Code Sample
SQL = """
SELECT TOP 10
submitted_date_id
FROM my_table
WHERE submitted_date_id BETWEEN %(mindate)s AND %(maxdate)s
"""
df = pd.read_sql(
SQL,
con,
params={'mindate': 20171008, 'maxdate': '20171010'},
parse_dates={'submitted_date_id': '%Y%m%d'})
dfThe underlaying database is MSSQL and I'm using pymssql to build the connection con.
Problem description
The column submitted_date_id has integers representing the date YYYYMMDD. The code above is expected to parse the column and populate the resulting column in the dataframe with Timestamp objects. However, this code yields an error:
ValueError: cannot cast unit %Y%m%d
The current behavior is counter intuitive and seems to assume that the date column contains stings. A work around is to cast the column in the query to VARCHAR, but this is cumbersome. Moreover, it adds unneeded complexity to the query.
Expected Output
When providing the format of the dates to parse_dates, it is expected that the column will hold Timestamp objects.
Output of pd.show_versions()
Details
INSTALLED VERSIONS
commit: None
python: 3.6.2.final.0
python-bits: 64
OS: Darwin
OS-release: 16.7.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: en_US.UTF-8
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.20.3
pytest: 3.2.1
pip: 9.0.1
setuptools: 36.3.0
Cython: None
numpy: 1.13.1
scipy: 0.19.1
xarray: None
IPython: 6.2.0
sphinx: 1.6.4
patsy: None
dateutil: 2.6.1
pytz: 2017.2
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: 2.0.2
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: 0.999999999
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
pandas_gbq: None
pandas_datareader: None