-
-
Notifications
You must be signed in to change notification settings - Fork 18.7k
Closed
Labels
BugResampleresample methodresample methodTestingpandas testing functions or related to the test suitepandas testing functions or related to the test suite
Milestone
Description
import pandas as pd
import numpy as np
df = pd.DataFrame({'date': pd.date_range(start='2016-01-01', periods=4, freq='W'),
'group': [1, 1, 2, 2],
'val': [5, 6, 7, 8]})
df['val'] = df['val'].astype(np.int32)
df.set_index('date', inplace=True)
df['val'].dtype
#[out] dtype('int32')
Calling resample() on the dataframe does not change the type.
df1 = df.resample('1D', fill_method='ffill')
df1['val'].dtype
#[out] dtype('int32')
However, when calling resample() in a group by statement, float type is returned!
df2 = df.groupby('group').resample('1D', fill_method='ffill')
df2['val'].dtype
#[out] dtype('float64')
Why is val converted to float in the group by statement?
I originally posted this on stack overflow.
INSTALLED VERSIONS
------------------
commit: None
python: 2.7.10.final.0
python-bits: 64
OS: Darwin
OS-release: 14.5.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: en_US.UTF-8
LANG: en_US.UTF-8
pandas: 0.17.1
nose: None
pip: 7.1.2
setuptools: 18.2
Cython: 0.23.4
numpy: 1.10.1
scipy: None
statsmodels: None
IPython: 4.0.0
sphinx: None
patsy: None
dateutil: 2.4.2
pytz: 2015.7
blosc: None
bottleneck: None
tables: None
numexpr: 2.4.6
matplotlib: 1.5.0
openpyxl: None
xlrd: 0.9.4
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: None
httplib2: None
apiclient: None
sqlalchemy: 1.0.9
pymysql: None
psycopg2: None
Jinja2: None
Metadata
Metadata
Assignees
Labels
BugResampleresample methodresample methodTestingpandas testing functions or related to the test suitepandas testing functions or related to the test suite