Skip to content

Conversation

dependabot[bot]
Copy link
Contributor

@dependabot dependabot bot commented on behalf of github Aug 21, 2025

Bumps vllm from 0.9.0 to 0.10.1.1.

Release notes

Sourced from vllm's releases.

v0.10.1.1

This is a critical bugfix and security release:

Full Changelog: vllm-project/vllm@v0.10.1...v0.10.1.1

v0.10.1

Highlights

v0.10.1 release includes 727 commits, 245 committers (105 new contributors).

Model Support

  • New model families: GPT-OSS with comprehensive tool calling and streaming support (#22327, #22330, #22332, #22335, #22339, #22340, #22342), Command-A-Vision (#22660), mBART (#22883), and SmolLM3 using Transformers backend (#22665).
  • Vision-language models: Official Eagle multimodal support with Llama4 backend (#20788), Step3 vision-language models (#21998), Gemma3n multimodal (#20495), MiniCPM-V 4.0 (#22166), HyperCLOVAX-SEED-Vision-Instruct-3B (#20931), Emu3 with Transformers backend (#21319), Intern-S1 (#21628), and Prithvi in online serving mode (#21518).
  • Enhanced existing models: NemotronH support (#22349), Ernie 4.5 Base 0.3B model name change (#21735), GLM-4.5 series improvements (#22215), Granite models with fused MoE configurations (#21332) and quantized checkpoint loading (#22925), Ultravox support for Llama 4 and Gemma 3 backends (#17818), Mamba1 and Jamba model support in V1 (without CUDA graphs) (#21249)
  • Advanced model capabilities: Qwen3 EPLB (#20815) and dual-chunk attention support (#21924), Qwen native Eagle3 target support (#22333).
  • Architecture expansions: Encoder-only models without KV-cache enabling BERT-style architectures (#21270), expanded tensor parallelism support in Transformers backend (#22651), tensor parallelism for Deepseek_vl2 vision transformer (#21494), and tensor/pipeline parallelism with Mamba2 kernel for PLaMo2 (#19674).
  • V1 engine compatibility: Extended support for additional pooling models (#21747) and Step3VisionEncoder distributed processing option (#22697).

Engine Core

  • CUDA graph performance: Full CUDA graph support with separate attention routines, adding FA2 and FlashInfer compatibility (#20059), plus 6% end-to-end throughput improvement from Cutlass MLA (#22763).
  • Attention system advances: Multiple attention metadata builders per KV cache specification (#21588), tree attention backend for v1 engine (experimental) (#20401), FlexAttention encoder-only support (#22273), upgraded FlashAttention 3 with attention sink support (#22313), and multiple attention groups for KV sharing patterns (#22672).
  • Speculative decoding optimizations: N-gram speculative decoding with single KMP token proposal algorithm (#22437), explicit EAGLE3 interface for enhanced compatibility (#22642).
  • Default behavior improvements: Pooling models now default to chunked prefill and prefix caching (#20930), disabled chunked local attention by default for Llama4 for better performance (#21761).
  • Extensibility and configuration: Model loader plugin system (#21067), custom operations support for FusedMoe (#22509), rate limiting with bucket algorithm for proxy server (#22643), torch.compile support for bailing MoE (#21664).
  • Performance optimizations: Improved startup time by disabling C++ compilation of symbolic shapes (#20836), enhanced headless models for pooling in Transformers backend (#21767).

Hardware & Performance

  • NVIDIA Blackwell (SM100) optimizations: CutlassMLA as default backend (#21626), FlashInfer MoE per-tensor scale FP8 backend (#21458), SM90 CUTLASS FP8 GEMM with kernel tuning and swap AB support (#20396).
  • NVIDIA RTX 5090/RTX PRO 6000 (SM120) support: Block FP8 quantization (#22131) and CUTLASS NVFP4 4-bit weights/activations support (#21309).
  • AMD ROCm platform enhancements: Flash Attention backend for Qwen-VL models (#22069), AITER HIP block quantization kernels (#21242), reduced device-to-host transfers (#22683), and optimized kernel performance for small batch sizes 1-4 (#21350).
  • Attention and compute optimizations: FlashAttention 3 attention sinks performance boost (#22478), Triton-based multi-dimensional RoPE replacing PyTorch implementation (#22375), async tensor parallelism for scaled matrix multiplication (#20155), optimized FlashInfer metadata building (#21137).
  • Memory and throughput improvements: Mamba2 reduced device-to-device copy overhead (#21075), fused Triton kernels for RMSNorm (#20839, #22184), improved multimodal hasher performance for repeated image prompts (#22825), multithreaded async multimodal loading (#22710).
  • Parallelization and MoE optimizations: Guided decoding throughput improvements (#21862), balanced expert sharding for MoE models (#21497), expanded fused kernel support for topk softmax (#22211), fused MoE for nomic-embed-text-v2-moe (#18321).
  • Hardware compatibility and kernels: ARM CPU build fixes for systems without BF16 support (#21848), Machete memory-bound performance improvements (#21556), FlashInfer TRT-LLM prefill attention kernel support (#22095), optimized reshape_and_cache_flash CUDA kernel (#22036), CPU transfer support in NixlConnector (#18293).
  • Specialized CUDA kernels: GPT-OSS activation functions (#22538), RLHF weight loading acceleration (#21164).

Quantization

  • Advanced quantization techniques: MXFP4 and bias support for Marlin kernel (#22428), NVFP4 GEMM FlashInfer backends (#22346), compressed-tensors mixed-precision model loading (#22468), FlashInfer MoE support for NVFP4 (#21639).
  • Hardware-optimized quantization: Dynamic 4-bit quantization with Kleidiai kernels for CPU inference (#17112), TensorRT-LLM FP4 quantization optimized for MoE low-latency inference (#21331).
  • Expanded model quantization support: BitsAndBytes quantization for InternS1 (#21953) and additional MoE models (#21370, #21548), Gemma3n quantization compatibility (#21974), calibration-free RTN quantization for MoE models (#20766), ModelOpt Qwen3 NVFP4 support (#20101).
  • Performance and compatibility improvements: CUDA kernel optimization for Int8 per-token group quantization (#21476), non-contiguous tensor support in FP8 quantization (#21961), automatic detection of ModelOpt quantization formats (#22073).
  • Breaking change: Removed AQLM quantization support (#22943) - users should migrate to alternative quantization methods.

API & Frontend

  • OpenAI API compatibility: Unix domain socket support for local communication (#18097), improved error response format matching upstream specification (#22099), aligned tool_choice="required" behavior with OpenAI when tools list is empty (#21052).

... (truncated)

Commits

Dependabot compatibility score

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot show <dependency name> ignore conditions will show all of the ignore conditions of the specified dependency
  • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    You can disable automated security fix PRs for this repo from the Security Alerts page.

Bumps [vllm](https://github.com/vllm-project/vllm) from 0.9.0 to 0.10.1.1.
- [Release notes](https://github.com/vllm-project/vllm/releases)
- [Changelog](https://github.com/vllm-project/vllm/blob/main/RELEASE.md)
- [Commits](vllm-project/vllm@v0.9.0...v0.10.1.1)

---
updated-dependencies:
- dependency-name: vllm
  dependency-version: 0.10.1.1
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <[email protected]>
@dependabot dependabot bot added dependencies Pull requests that update a dependency file python Pull requests that update Python code labels Aug 21, 2025
@oracle-contributor-agreement oracle-contributor-agreement bot added the OCA Verified All contributors have signed the Oracle Contributor Agreement. label Aug 21, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
dependencies Pull requests that update a dependency file OCA Verified All contributors have signed the Oracle Contributor Agreement. python Pull requests that update Python code
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants