Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
55 changes: 54 additions & 1 deletion tests/test_optimizers.py
Original file line number Diff line number Diff line change
Expand Up @@ -1062,7 +1062,6 @@ def test_transpose_reciprocal(self, shape, perm_input, perm_output):
self.run_transpose_compare(["OUT"], {"X": np.random.randn(*shape).astype(np.float32)},
model_proto, remaining_transpose_num=0)


@parameterized.expand([
((1, 3, 4, 5), (1, 3, 1, 1), [0, 2, 3, 1], [0, 3, 1, 2]),
((1, 3, 4, 5, 6), (1, 3, 1, 1, 1), [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]),
Expand All @@ -1084,6 +1083,60 @@ def test_transpose_reducemean(self, input_shape, output_shape, perm_input, perm_
self.run_transpose_compare(["res"], {"X": np.random.randn(*input_shape).astype(np.float32)},
model_proto, remaining_transpose_num=0)

@parameterized.expand([
((1, 3, 4, 5), (1, 3, 4, 1), [2], [0, 2, 3, 1], [0, 3, 1, 2]),
((1, 3, 4, 5), (1, 3, 1, 1), [1, 2], [0, 2, 3, 1], [0, 3, 1, 2]),
((1, 3, 4, 5), (1, 1, 1, 1), [0, 1, 2, 3], [0, 2, 3, 1], [0, 3, 1, 2]),
((1, 3, 4, 5, 6), (1, 3, 1, 5, 6), [1], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]),
((1, 3, 4, 5, 6), (1, 3, 1, 1, 1), [1, 2, 3], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]),
((1, 3, 4, 5, 6), (1, 1, 1, 1, 1), [0, 1, 2, 3, 4], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]),
])
@check_opset_max_version(12, "ReduceSum from opset <= 12 has axes as an attribute")
def test_transpose_reducesum(self, input_shape, output_shape, axes, perm_input, perm_output):
node0 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1")
node1 = helper.make_node("ReduceSum", ["Y"], ["Z"], axes=axes,
keepdims=1, name="reducesum")
node2 = helper.make_node("Transpose", ["Z"], ["res"], perm=perm_output, name="trans_2")

graph = helper.make_graph(
[node0, node1, node2],
"transpose-reducesum-test",
[helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)],
[helper.make_tensor_value_info("res", TensorProto.FLOAT, output_shape)],
)

model_proto = self.make_model(graph, producer_name="onnx-tests")
self.run_transpose_compare(["res"], {"X": np.random.randn(*input_shape).astype(np.float32)},
model_proto, remaining_transpose_num=0)

@parameterized.expand([
((1, 3, 4, 5), (1, 3, 4, 1), [2], [0, 2, 3, 1], [0, 3, 1, 2]),
((1, 3, 4, 5), (1, 3, 1, 1), [1, 2], [0, 2, 3, 1], [0, 3, 1, 2]),
((1, 3, 4, 5), (1, 1, 1, 1), [0, 1, 2, 3], [0, 2, 3, 1], [0, 3, 1, 2]),
((1, 3, 4, 5, 6), (1, 3, 1, 5, 6), [1], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]),
((1, 3, 4, 5, 6), (1, 3, 1, 1, 1), [1, 2, 3], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]),
((1, 3, 4, 5, 6), (1, 1, 1, 1, 1), [0, 1, 2, 3, 4], [0, 2, 3, 4, 1], [0, 4, 1, 2, 3]),
])
@check_opset_min_version(13, "ReduceSum from opset >= 13 has axes as an input")
def test_transpose_reducesum_opset_13(self, input_shape, output_shape, axes, perm_input, perm_output):
node0 = helper.make_node("Transpose", ["X"], ["Y"], perm=perm_input, name="trans_1")
node1 = helper.make_node("ReduceSum", ["Y", "axes"], ["Z"], keepdims=1, name="reducesum")
node2 = helper.make_node("Transpose", ["Z"], ["res"], perm=perm_output, name="trans_2")

axes = np.array(axes, dtype=np.int64)

graph = helper.make_graph(
[node0, node1, node2],
"transpose-reducesum-test",
[helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape)],
[helper.make_tensor_value_info("res", TensorProto.FLOAT, output_shape)],
[helper.make_tensor("axes", TensorProto.INT64, axes.shape, axes)],
)

model_proto = self.make_model(graph, producer_name="onnx-tests")
self.run_transpose_compare(["res"], {"X": np.random.randn(*input_shape).astype(np.float32)},
model_proto, remaining_transpose_num=0)

@parameterized.expand([
((2, 3, 4, 5), (2, 4, 5, 3), [0, 2, 3, 1]),
((2, 3, 4, 5, 6), (2, 4, 5, 6, 3), [0, 2, 3, 4, 1]),
Expand Down
29 changes: 29 additions & 0 deletions tf2onnx/optimizer/transpose_optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -193,6 +193,7 @@ def _initialize_handlers(self):
"Pad": self._pad_handler,
"Reciprocal": self._simple_through_handler,
"ReduceMean": self._reducemean_handler,
"ReduceSum": self._reducesum_handler,
"Relu": self._simple_through_handler,
"Shape": self._shape_handler,
"Sigmoid": self._simple_through_handler,
Expand Down Expand Up @@ -712,6 +713,34 @@ def _reducemean_handler(self, trans, node):
return self._switch_transpose_and_node(node, trans)
return False

def _reducesum_handler(self, trans, node):
keepdims = node.get_attr("keepdims")
# make sure keepdims is 1, then we can do the swap, otherwise, please don't, because
# once keepdims is not set, original dims are lost, so transpose back won't work well.
# by default, if keepdims is not specified, it is 1
if keepdims and keepdims.i == 0:
return False
if self._g.opset <= 12:
axes = node.get_attr("axes").ints
perm = trans.get_attr('perm').ints
new_axes = [perm[axis] for axis in axes]
node.set_attr("axes", new_axes)
return self._switch_transpose_and_node(node, trans)
if node.inputs[1].is_const():
axes = node.inputs[1].get_tensor_value()
perm = trans.get_attr('perm').ints
axes = [perm[axes[i]] for i in range(len(axes))]
new_axes = np.array(axes, dtype=np.int64)
if self._nodes_has_single_consumer_node([node.inputs[1]]):
node.inputs[1].set_tensor_value(new_axes)
else:
new_axes_const = self._g.make_const(
utils.make_name(node.inputs[1].name), new_axes
)
self._g.replace_input(node, node.input[1], new_axes_const.output[0], 1)
return self._switch_transpose_and_node(node, trans)
return False

def _slice_handler(self, trans, node):
trans_rank = get_transpose_rank(trans)
axes = None
Expand Down