Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions tests/test_backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -3765,6 +3765,23 @@ def func(indices, dense_shape, new_shape, shape_pad):
self._run_test_case(func, [_OUTPUT, _OUTPUT1], {_INPUT: indices_val, _INPUT1: dense_shape_val,
_INPUT2: new_shape_val, _INPUT3: shape_pad_val})

@check_tf_min_version("1.14", "ragged needs tf 1.14")
@check_opset_min_version(11, "CumSum")
def test_ragged_tensor_to_sparse(self):
splits_val1 = np.array([0, 1, 1, 5], dtype=np.int32)
splits_val2 = np.array([0, 3, 3, 5, 9, 10], dtype=np.int32)
dense_vals_val = np.array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19], dtype=np.float32)
def func(splits1, splits2, rt_dense_values):
x = tf.RaggedTensor.from_nested_row_splits(rt_dense_values, [splits1, splits2], validate=True)
s = x.to_sparse()
indices, values, shape = s.indices, s.values, s.dense_shape
indices = tf.identity(indices, name=_TFOUTPUT)
values = tf.identity(values, name=_TFOUTPUT1)
shape = tf.identity(shape, name=_TFOUTPUT2)
return indices, values, shape
self._run_test_case(func, [_OUTPUT, _OUTPUT1, _OUTPUT2],
{_INPUT: splits_val1, _INPUT1: splits_val2, _INPUT2: dense_vals_val})

@check_tf_min_version("1.14", "ragged needs tf 1.14")
@check_opset_min_version(11, "Range")
def test_ragged_range_float(self):
Expand Down
82 changes: 62 additions & 20 deletions tf2onnx/onnx_opset/tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -2036,6 +2036,65 @@ def version_11(cls, ctx, node, **kwargs):
ctx.replace_inputs(node, [expand_node.output[0], sparse_indices, sparse_vals])


def ragged_lengths_to_sparse_indices(ctx, ragged_lens):
const_zero_int64 = ctx.make_const(utils.make_name("const_zero"), np.array(0, dtype=np.int64)).output[0]
num_cols = ctx.make_node("ReduceMax", [ragged_lens], attr={'axes': [0], 'keeepdims': True}).output[0]
num_rows = ctx.make_node("Shape", [ragged_lens]).output[0]
range_len = ctx.make_node("Mul", [num_cols, num_rows]).output[0]

# ORT seems to have a shape inference bug for the Range node. Use CumSum instead.
one_tensor = helper.make_tensor("value", TensorProto.INT64, dims=[1], vals=[1])
ones_of_shape = ctx.make_node("ConstantOfShape", [range_len], attr={"value": one_tensor}).output[0]
range_node = ctx.make_node("CumSum", [ones_of_shape, const_zero_int64], attr={'exclusive': True}).output[0]
#const_one_int64 = ctx.make_const(utils.make_name("const_one"), np.array(1, dtype=np.int64)).output[0]
#range_node = ctx.make_node("Range", [const_zero_int64, range_len, const_one_int64]).output[0]

col_indices_dense = ctx.make_node("Mod", [range_node, num_cols]).output[0]
row_indices_dense = ctx.make_node("Div", [range_node, num_cols]).output[0]
row_lens_dense = ctx.make_node("Gather", [ragged_lens, row_indices_dense]).output[0]
indices_to_keep = ctx.make_node("Less", [col_indices_dense, row_lens_dense]).output[0]
col_indices = ctx.make_node("Compress", [col_indices_dense, indices_to_keep]).output[0]
row_indices = ctx.make_node("Compress", [row_indices_dense, indices_to_keep]).output[0]
return num_rows, num_cols, row_indices, col_indices


@tf_op("RaggedTensorToSparse")
class RaggedTensorToSparse:
@classmethod
def version_11(cls, ctx, node, **kwargs):
# https://www.tensorflow.org/guide/ragged_tensor#multiple_ragged_dimensions
dense_values = node.inputs[-1]
nested_splits = node.inputs[:-1]
sparse_indices = None
dense_shape_dims = []
for split in nested_splits:
if ctx.get_dtype(split.output[0]) != TensorProto.INT64:
split = ctx.make_node("Cast", [split.output[0]], attr={'to': TensorProto.INT64})
max_int64 = int(utils.get_max_value(np.int64))
slice1 = GraphBuilder(ctx).make_slice(
{"data": split.output[0], "ends": [max_int64], "starts": [1], "axes": [0]})
slice2 = GraphBuilder(ctx).make_slice(
{"data": split.output[0], "ends": [-1], "starts": [0], "axes": [0]})
ragged_lens = ctx.make_node("Sub", [slice1, slice2]).output[0]
num_rows, num_cols, row_indices, col_indices = ragged_lengths_to_sparse_indices(ctx, ragged_lens)
if not dense_shape_dims:
dense_shape_dims.append(num_rows)
dense_shape_dims.append(num_cols)
if sparse_indices is None:
row_indices = GraphBuilder(ctx).make_unsqueeze({"data": row_indices, "axes": [1]})
else:
row_indices = ctx.make_node("Gather", [sparse_indices, row_indices]).output[0]
col_indices = GraphBuilder(ctx).make_unsqueeze({"data": col_indices, "axes": [1]})
sparse_indices = ctx.make_node("Concat", [row_indices, col_indices], attr={'axis': 1},
op_name_scope=node.name).output[0]
dense_shape = ctx.make_node("Concat", dense_shape_dims, attr={'axis': 0}, op_name_scope=node.name).output[0]

ctx.replace_all_inputs(node.output[0], sparse_indices)
ctx.replace_all_inputs(node.output[1], dense_values.output[0])
ctx.replace_all_inputs(node.output[2], dense_shape)
ctx.remove_node(node.name)


@tf_op("RaggedRange")
class RaggedRange:
@classmethod
Expand Down Expand Up @@ -2076,34 +2135,17 @@ def version_11(cls, ctx, node, **kwargs):

const_zero_list = ctx.make_const(utils.make_name("const_zero_list"), np.array([0], dtype=np.int64)).output[0]

max_row_len = ctx.make_node("ReduceMax", [row_lens], attr={'axes': [0], 'keeepdims': False}).output[0]
inp_shape = ctx.make_node("Shape", [row_lens]).output[0]
range_len = ctx.make_node("Mul", [max_row_len, inp_shape]).output[0]

# ORT seems to have a shape inference bug for the Range node. Use CumSum instead.
one_tensor = helper.make_tensor("value", TensorProto.INT64, dims=[1], vals=[1])
ones_of_shape = ctx.make_node("ConstantOfShape", [range_len], attr={"value": one_tensor}).output[0]
range_node = ctx.make_node("CumSum", [ones_of_shape, const_zero_int64], attr={'exclusive': True}).output[0]
#const_one_int64 = ctx.make_const(utils.make_name("const_one"), np.array(1, dtype=np.int64)).output[0]
#range_node = ctx.make_node("Range", [const_zero_int64, range_len, const_one_int64]).output[0]

col_indices_dense = ctx.make_node("Mod", [range_node, max_row_len]).output[0]
row_indices_dense = ctx.make_node("Div", [range_node, max_row_len]).output[0]
row_lens_dense = ctx.make_node("Gather", [row_lens, row_indices_dense]).output[0]
indices_to_keep = ctx.make_node("Less", [col_indices_dense, row_lens_dense]).output[0]
col_indices = ctx.make_node("Compress", [col_indices_dense, indices_to_keep]).output[0]
row_indices = ctx.make_node("Compress", [row_indices_dense, indices_to_keep]).output[0]

num_rows, _, row_indices, col_indices = ragged_lengths_to_sparse_indices(ctx, row_lens)

split_ends = ctx.make_node("CumSum", [row_lens, const_zero_int64]).output[0]
splits_out = ctx.make_node("Concat", [const_zero_list, split_ends], attr={'axis': 0}).output[0]
col_indices_cast = ctx.make_node("Cast", [col_indices], attr={'to': data_dtype}).output[0]

if ctx.get_rank(starts) != 1:
starts = ctx.make_node("Expand", [starts, inp_shape]).output[0]
starts = ctx.make_node("Expand", [starts, num_rows]).output[0]

if ctx.get_rank(deltas) != 1:
deltas = ctx.make_node("Expand", [deltas, inp_shape]).output[0]
deltas = ctx.make_node("Expand", [deltas, num_rows]).output[0]

gather_starts = ctx.make_node("Gather", [starts, row_indices]).output[0]
gather_deltas = ctx.make_node("Gather", [deltas, row_indices]).output[0]
Expand Down