_ README.md: an overview of the project
|___ data: data files used in the project
|___ processed_data: intermediate files from the analysis
|___ results: results of the analyses (data, tables, figures)
|___ R: contains all R-code in the project
Questionnaire scoring, preprocessing, and explorative analyses on SAM study data
The results of this project are described in: Sep MSC, Joëls M, Geuze E. Individual differences in the encoding of contextual details following acute stress: An explorative study. Eur J Neurosci. 2020; ejn.15067. doi:10.1111/ejn.15067
Note, source only works properly in a R markdown file, if Rstudio > Tools > Global options > R Markdown > evaluate chunks in directory = project.
(see) AND if source is not in 'setup' chunk
- script:
SAM_netq_calculate_scores.RMDandSAM_netq_function_scoring.r - input:
SAM Questionnaire Masterfile.savSAM_MCT.csvSAM_FGT.csvSAM_Codes_Task_Protocol_Versions.csv
- actions: descriptive statistics MCT and FGT papers of the SAM study and questionnaire scoring:
- symptoms: SCL90
- (early) life adversity) CTQ, LSCR
- Personality: STAI-T, s-TCI, HEXACO
- emotional state: VAS, STAI-S, PANAS
- output dataset:
SAM_netq_scored.rds
- script:
SAMexplore_data_merge.R - input:
- Questionnaires:
SAM_netq_scored.rds - Endocrine:
sAA_sCORT_condition_dataset.rds(available via this repository) - Memory:
SAM_MCT.csv&SAM_FGT.csv
- Questionnaires:
- actions: merge data from different sources and calculate context-memory summary scores (neutral, emotional & fearful)
- output:
SAM_complete.rds
- script:
SAMexplore_imputation.Rmd - input:
SAM_complete.rds - actions: (passive) imputations of missing values
- output:
- imputed data: Direct imputation is saved in
impTS.rds, Passive imputation is saved inpas.imp.rds - combined imputed data:
implist.rds
- imputed data: Direct imputation is saved in
- Variable reduction: AUC
- script:
SAMexplore_AUC_calculations.RMD - input:
implist.rdsSAM_Timepoints_reactivity_measures.csv
- actions: Calculation AUCg and AUCi for repeated measures of emotional/stress state (self-report & endocrine)
- output:
SAMimputed_with.AUC.variables.RDS
- Standardization: Z-scores
- script:
SAMexplore_prepare.for.analyses.r - input:
SAMimputed_with.AUC.variables.RDS - actions:
- variable selection
- z-scrore transformation (of all numeric variables)
- Calculation cumulative stress exposure score Kok & Sep et al. 2016
- split data per experimental condition
- output:
- lists with imputed data per experimental condition:
- No-stress group:
imp.nos - Immediate stress group:
imp.ims - Delayed stress group:
imp.des
- No-stress group:
- functions to prepare boruta/rf data
- lists with imputed data per experimental condition:
- script:
SAMexplore_descriptive_tables.Rmd - input:
processed_data/implist.withRAW11.rds(created with preparation code inSAMexplore_imputation.Rmd, andSAMexplore_AUC_calculations.RMD) - actions: create a descriptive table (see supporting information in manuscript)
- output: table
- scripts:
SAMexplore_TM_distributions.Rmd&SAMexplore_TM_assumptions.RMD&SAMexplore_TM_analysis.Rmd&SAMexplore_TM_visualization.Rmd - input:
SAMimputed_with.AUC.variables.RDSviaSAMexplore_prepare.for.analyses.r - actions: inspect variable distributions, assumptions checks, linear models analysis, and the visualization of marginal effects
- output: tables & plots
- scripts:
SAMexplore_RF_Tuning_Boruta.Rmd&SAMexplore_RF_Boruta_variable.selection.Rmd&SAMexplore_RF_Boruta_interpretation.Rmd - input:
SAMimputed_with.AUC.variables.RDSviaSAMexplore_prepare.for.analyses.r - actions: RF tuning, Boruta variable selection, Random permutation statistics, follow-up (PD and ALE) plots
- output: tables & plots
- script:
SAMexplore_model.performance.evaluation.Rmd - input:
SAMimputed_with.AUC.variables.RDSviaSAMexplore_prepare.for.analyses.r - actions: 10 times 5-fold crossvalidated "predictions", to calculate R2 and RMSE of models with:
- significant terms TM
- selected variables RF/Boruta
- combination TM terms & RF variables: linear model with polynomial terms (if required)
- output: tables & plots
pseudoData.Rwas used to create fake pseudo-data for an independent check of the R-codeSAMexplore_RF_R2_vs_PseudoR2.rmdwas used to explore the differences in R2 and pseudo-R2 calculations (also see information inSAMexplore_RF_Boruta_interpretation.Rmd)