Skip to content

microsoft/SheetBrain

SheetBrain 🧠

Architecture Diagram SheetBrain is an intelligent Excel analysis and automation toolkit powered by LLM agent. It provides a three-stage architecture (Understand-Execute-Validate) for comprehensive Excel data analysis with iterative improvement capabilities. This repository provides the implementation of the methods described in our paper.

Features

  • 🔍 Understanding Module: Analyzes Excel structure and context using multimodal LLM
  • 💻 Execution Module: Multi-turn reasoning and Python code execution for complex analysis
  • Validation Module: Quality assurance and iterative improvement through LLM validation
  • 📊 Excel Toolkit: Comprehensive utilities for Excel operations (reading, writing, formatting, charts)
  • 🔄 Iterative Improvement: Automatic refinement of analysis through validation feedback
  • 🛠️ Flexible Configuration: Customizable settings and deployment options

Architecture

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│  Understanding  │ -> │   Execution     │ -> │   Validation    │
│     Module      │    │     Module      │    │     Module      │
└─────────────────┘    └─────────────────┘    └─────────────────┘
        │                       │                       │
        v                       v                       v
   Analyze Excel          Multi-turn Code        Quality Assurance
   Structure & Context    Execution & Logic      & Feedback Loop

Installation

Prerequisites

  • Python 3.8 or higher
  • OpenAI API access

Install from Source

git clone https://github.com/microsoft/SheetBrain.git
cd SheetBrain
pip install -r requirements.txt

Quick Start

1. Basic Usage

# Import from the organized modules
from core.agent import SheetBrain

# Initialize SheetBrain
agent = SheetBrain(excel_path="your_file.xlsx")

# Ask a question about your Excel file
result = agent.run(
    user_question="What is the total sales for Q4?",
    max_turns=3,
    enable_validation=True,
    enable_understanding=True
)

print(f"Answer: {result['answer']}")
print(f"Confidence: {result['confidence_score']:.2f}")

2. Using Configuration

from core.agent import SheetBrain
from config.settings import Config

# Custom configuration
config = Config(
    api_key="your-openai-api-key",
    base_url="https://api.openai.com/v1",
    deployment="gpt-4",
    max_turns=5,
    enable_validation=True,
    enable_understanding=True
)

agent = SheetBrain(excel_path="your_file.xlsx", config=config)
result = agent.run("Find the top 5 customers by revenue")

3. Command Line Interface

# Basic usage via Python module
python -m main your_file.xlsx "What is the average sales per month?"

# Or run directly
python main.py your_file.xlsx "Analyze quarterly trends" \
    --max-turns 5 \
    --token-budget 15000 \
    --verbose

# Disable certain stages
python main.py your_file.xlsx "Simple question" \
    --no-validation \
    --no-understanding

Running Examples

SheetBrain includes built-in example to help you get started:

# Run the included example script
python run_example.py

Advanced Usage

Working with Images

from PIL import Image

# Load a screenshot of your Excel sheet
image = Image.open("excel_screenshot.png")

result = agent.run(
    user_question="Analyze the chart in this image",
    table_image=image
)

Iterative Analysis

# The agent automatically iterates when validation fails
result = agent.run(
    user_question="Complex analysis requiring multiple steps",
    max_turns=10,  # Allow more iterations for complex tasks
    enable_validation=True  # Enable automatic improvement
)

# Check iteration details
print(f"Total iterations: {result['total_iterations']}")
for i, exec_result in enumerate(result['all_execution_results']):
    print(f"Iteration {i+1}: {exec_result['success']}")

API Reference

SheetBrain Class

from core.agent import SheetBrain
from config.settings import Config

class SheetBrain:
    def __init__(
        self,
        excel_path: str,
        config: Optional[Config] = None,
        total_token_budget: int = 10000,
        load_excel: bool = True,
        excel_context_understanding: Optional[str] = None,
        excel_context_execution: Optional[str] = None
    )

    def run(
        self,
        user_question: str,
        table_image: Optional[Image.Image] = None,
        max_turns: Optional[int] = None,
        enable_validation: Optional[bool] = None,
        enable_understanding: Optional[bool] = None
    ) -> Dict[str, Any]

Error Handling

SheetBrain includes comprehensive error handling:

from core.agent import SheetBrain

try:
    agent = SheetBrain("your_file.xlsx")
    result = agent.run("Your question here")
    if not result['success']:
        print(f"Analysis failed: {result['answer']}")
        print(f"Issues found: {result['issues_found']}")
except Exception as e:
    print(f"Critical error: {e}")

File Structure

SheetBrain/
├── config/                     # Configuration management
│   ├── __init__.py
│   └── settings.py            # Config class with environment support
├── core/                      # Core functionality
│   ├── __init__.py
│   └── agent.py              # Main SheetBrain agent class
├── modules/                   # Processing modules
│   ├── __init__.py
│   ├── understanding.py      # Understanding module
│   ├── execution.py          # Execution module
│   └── validation.py         # Validation module
├── utils/                     # Utilities
│   ├── __init__.py
│   ├── excel_toolkit.py      # Excel operations toolkit
│   └── logger.py             # Logging utilities
├── main.py                    # CLI entry point
├── run_example.py            # Standalone example runner
├── setup.py                  # Package setup
├── requirements.txt          # Dependencies
└── README.md                 # This file

Performance Tips

  1. Token Budget Management: Adjust total_token_budget based on file size
  2. Disable Stages: Use enable_validation=False for simple queries
  3. Iteration Control: Set appropriate max_turns for task complexity

Troubleshooting

Common Issues

  1. API Key Not Set: Ensure OPENAI_API_KEY environment variable is set
  2. File Not Found: Check Excel file path is correct and accessible
  3. Memory Issues: limit total_token_budget for very large files

Debug Mode

import logging
logging.basicConfig(level=logging.DEBUG)

# Enable verbose output
result = agent.run(user_question, verbose=True)

Dataset

Our dataset is publicly available on Hugging Face: https://huggingface.co/datasets/neuromaner/sheetbench

Citation

Our paper is available on arXiv: https://arxiv.org/abs/2510.19247

If you find our work helpful, please cite:

@article{wang2025sheetbrain,
  title   = {SheetBrain: A Neuro-Symbolic Agent for Accurate Reasoning over Complex and Large Spreadsheets},
  author  = {Wang, Ziwei and Su, Jiayuan and Zhou, Mengyu and Zeng, Huaxing and Jia, Mengni and Lv, Xiao and Dong, Haoyu and Ma, Xiaojun and Han, Shi and Zhang, Dongmei},
  journal = {arXiv preprint arXiv:2510.19247},
  year    = {2025},
  doi     = {10.48550/arXiv.2510.19247},
  url     = {https://arxiv.org/abs/2510.19247}
}

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repositories using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

About

No description, website, or topics provided.

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages