Skip to content

what is the need for num_samples parameter in inference? #79

@hwaseem04

Description

@hwaseem04
torchrun --nproc_per_node=2 --nnodes=1 ./gen_utils/generate.py \
model.name='bert-base-uncased' use_sentence_piece=True batch_size=128 \
exp.name=play2 load_step=10000 data.name=docedit \
tgt_len=90 max_pos_len=512 \
num_samples=1 intermediate_size=2048 num_attention_heads=8 dropout=0.2 \
in_channels=128 out_channels=128 time_channels=128 skip_sample=True gen_timesteps=1000 \
schedule_sampler='xy_uniform' time_att=False att_strategy='txl' load_from_ema=False prediction=True

anyway the for loop loads dev_dataloader which is just the same data. Then what is the point of num_sampes parameter

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions